Advertisement

Syntactic Pattern Recognition: Survey of Frontiers and Crucial Methodological Issues

  • Mariusz Flasiński
  • Janusz Jurek
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)

Abstract

The crucial methodological assumptions for constructing syntactic pattern recognition methods are presented in the paper. The frontiers constituting key open problems in the area of syntactic pattern recognition are identified. A survey and an analysis of the main methods based on an enhancement of context-free grammars results in formulating methodological principles for defining such methods. A discussion of key issues concerning a construction of graph grammar-basedmethods allows us to define methodological rules in this important area of syntactic pattern recognition.

Keywords

Graph Grammar Methodological Principle Membership Problem Graph Language Nonterminal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V.: Indexed grammars - an extension of context-free grammars. Journal of the Association for Computing Machinery 15, 647–671 (1968)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alquezar, R., Sanfeliu, A.: Recognition and learning of a class of context-sensitive languages described by augmented regular expressions. Pattern Recognition 30, 163–182 (1997)CrossRefGoogle Scholar
  3. 3.
    Bunke, H.O., Haller, B.: A parser for context free plex grammars. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 136–150. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition - Theory and Applications. World Scientific, Singapore (1990)zbMATHGoogle Scholar
  5. 5.
    Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York (1990)Google Scholar
  6. 6.
    Ferruci, F., Tortora, G., Tucci, M., Vitiello, G.: A predictive parser for visual languages specified by relational grammars. In: Proc. IEEE Symp. Visual Lang. VL 1994, pp. 245–252 (1994)Google Scholar
  7. 7.
    Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern recognition. Pattern Recognition 26, 1–16 (1993)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Flasiński, M.: Power properties of NLC graph grammars with a polynomial membership problem. Theoretical Computer Science 201, 189–231 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Flasiński, M., Jurek, J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recognition 32, 671–690 (1999)CrossRefGoogle Scholar
  10. 10.
    Flasiński, M.: Inference of parsable graph grammars for syntactic pattern recognition. Fundamenta Informaticae 80, 379–413 (2007)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  12. 12.
    Goldfarb, L.: Pattern representation and the future of pattern recognition. In: Proc. ICPR 2004 Workshop, Cambridge UK, August 22 (2004)Google Scholar
  13. 13.
    Gonzales, R.C., Thomason, M.G.: Syntactic Pattern Recognition: An Introduction. Addison-Wesley, Reading (1978)Google Scholar
  14. 14.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Machine Intell. 22, 4–37 (2000)CrossRefGoogle Scholar
  15. 15.
    Janssens, D., Rozenberg, G.: On the structure of node-label-controlled graph languages. Information Sciences 20, 191–216 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Jurek, J.: On the linear computational complexity of the parser for quasi context sensitive languages. Pattern Recognition Letters 21, 179–187 (2000)CrossRefGoogle Scholar
  17. 17.
    Jurek, J.: Recent developments of the syntactic pattern recognition model based on quasi-context sensitive languages. Pattern Recognition Letters 26, 1011–1018 (2005)CrossRefGoogle Scholar
  18. 18.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)zbMATHGoogle Scholar
  19. 19.
    Oates, T., Armstrong, T., Becerra-Bonache, L., Atamas, M.: Inferring grammars for mildly context sensitive languages in polynomial time. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 137–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Okhotin, A.: Boolean grammars. Information and Computation 194, 19–48 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)zbMATHGoogle Scholar
  22. 22.
    Peng, K.J., Yamamoto, T., Aoki, Y.: A new parsing scheme for plex grammars. Pattern Recognition 23, 393–402 (1990)CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, A., Milgram, D.L.: Web automata and web grammars. Machine Intelligence 7, 307–324 (1972)zbMATHGoogle Scholar
  24. 24.
    Rosenkrantz, D.J.: Programmed grammars and classes of formal languages. Journal of the Association for Computing Machinery 16, 107–131 (1969)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Rosenkrantz, D.J., Stearns, R.E.: Properties of deterministic top-down grammars. Information Control 17, 226–256 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Shi, Q.Y., Fu, K.S.: Parsing and translation of attributed expansive graph languages for scene analysis. IEEE Trans. Pattern Analysis Mach. Intell. 5, 472–485 (1983)CrossRefzbMATHGoogle Scholar
  27. 27.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  28. 28.
    Tanaka, E.: Theoretical aspects of syntactic pattern recognition. Pattern Recognition 28, 1053–1061 (1995)CrossRefGoogle Scholar
  29. 29.
    Turan, G.: On the complexity of graph grammars. Rep. Automata Theory Research Group. Szeged (1982)Google Scholar
  30. 30.
    Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27, 511–546 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Wittenburg, K.: Earley-style parsing for relational grammars. In: Proc. IEEE Symp. Visual Lang. VL 1992, pp. 192–199 (1992)Google Scholar
  32. 32.
    Zhang, D.Q., Zhang, K., Cao, J.: A context-sensitive graph grammar formalism for the specification of visual languages. The Computer Journal 44, 186–200 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mariusz Flasiński
    • 1
  • Janusz Jurek
    • 1
  1. 1.IT Systems DepartmentJagiellonian UniversityCracowPoland

Personalised recommendations