Advertisement

Designing Structured Sparse Dictionaries for Sparse Representation Modeling

  • G. Tessitore
  • R. Prevete
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)

Abstract

Linear approaches to the problem of unsupervised data dimensionality reduction consist in finding a suitable set of factors, which is usually called dictionary, on the basis of which data can be represented as a linear combination of the dictionary elements. In recent years there have been relevant efforts for searching data representation which are based on sparse dictionary elements or a sparse linear combination of the dictionary elements. Here we investigate the possibility to combine the advantages of both sparse dictionary elements and sparse linear combination. Notably, we also impose a structure on the dictionary elements. We compare our algorithm with two other different approaches presented in literature which impose either sparse structured dictionary elements or sparse linear combination. These (preliminary) results suggests that our approach presents some promising advantages, in particular a greater possibility of interpreting the data representation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Basso, C., Santoro, M., Verri, A., Villa, S.: Paddle: Proximal algorithm for dual dictionaries learning (2010), CoRR, abs/1011.3728Google Scholar
  3. 3.
    Bredies, K., Lorenz, D.: Linear Convergence of Iterative Soft-Thresholding. J. Fourier Anal. Appl. 14(5-6), 813–837 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57(11), 1413–1457 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Engan, K., Aase, S.O., Hakon Husoy, J.: Method of optimal directions for frame design. In: Proc. of ICASSP 1999, vol. 5, pp. 2443–2446. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  7. 7.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, corrected edition. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523 (2009)Google Scholar
  9. 9.
    Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: International Conference on AISTATS (2010)Google Scholar
  10. 10.
    Micchelli, C.A., Pontil, M.: Learning the kernel function via regularization. Journal of Machine Learning Research 6, 1099–1125 (2005)MathSciNetGoogle Scholar
  11. 11.
    Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50, 2231–2242 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Vinjamuri, R., Lee, H.N., Mao, Z.H.: Dimensionality reduction in control and coordination of the human hand. IEEE Trans. Biomed. Eng. 57(2), 284–295 (2010)CrossRefGoogle Scholar
  13. 13.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  14. 14.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics 15 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • G. Tessitore
    • 1
  • R. Prevete
    • 1
  1. 1.Department of Physical SciencesUniversity of Naples Federico IINaplesItaly

Personalised recommendations