Introduction

  • Diego A. R. Dalvit
  • Peter W. Milonni
  • David C. Roberts
  • Felipe S. S. Rosa
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

Casimir forces are associated with topological constraints on quantum fields. The most famous such effect was predicted in 1948 by Casimir, who found that there is an attractive force

References

  1. 1.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)MATHGoogle Scholar
  2. 2.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)MathSciNetGoogle Scholar
  3. 3.
    London, F.: Theory and system of molecular forces. Z. Phys. 63, 245 (1930)ADSMATHCrossRefGoogle Scholar
  4. 4.
    See, for instance, V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, N. Y., 2006).Google Scholar
  5. 5.
    Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)Google Scholar
  6. 6.
    Casimir, H.B.G., Polder, D.: The influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)ADSMATHCrossRefGoogle Scholar
  7. 7.
    Langmuir, I.: Role of attractive and repulsive forces in formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 6, 873 (1938)ADSCrossRefGoogle Scholar
  8. 8.
    Casimir, H.B.G.: Communication to P.W. Milonni, 12 March (1992)Google Scholar
  9. 9.
    Some of Einstein’s work related to zero-point energy is reviewed in P.W. Milonni, The Quantum Vacuum. An Introduction to Quantum Electrodynamics (Academic, San Diego, 1994).Google Scholar
  10. 10.
    Gearhart, C.A.: ‘Astonishing successes’ and ‘bitter disappointment’: The specific heat of hydrogen in quantum theory. Arch. Hist. Exact Sci. 64, 113 (2010)CrossRefGoogle Scholar
  11. 11.
    Mulliken, R.S.: The band spectrum of boron monoxide. Nature 114, 349 (1924)ADSCrossRefGoogle Scholar
  12. 12.
    Stenger, J., Inouye, S., Chikkatur, A.P., Stamper-Kurn, D.M., Pritchard, D.E., Ketterle, W.: Bragg spectroscopy of a Bose-Einstein condensate. Phys. Rev. Lett. 82, 4569 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    See, for instance, Milonni, P.W., Schaden, M., Spruch, L.: The Lamb shift of an atom in a dielectric medium. Phys. Rev. A 59, 4259 (1999) and references thereinGoogle Scholar
  14. 14.
    See, for example, Reference [9] and references thereinGoogle Scholar
  15. 15.
    Spruch, L.L., Kelsey, E.J.: Vacuum fluctuation and retardation effects in long-range potentials. Phys. Rev. A. 18, 845 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    Feinberg, G., Sucher, J.J., Au, C.K.: The dispersion theory of dispersion forces. Phys. Rep. 180, 83 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory, pp. 141. McGraw-Hill, N.Y. (1980)Google Scholar
  18. 18.
    Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media in thermal equilibrium. Phys. Rev. A. 81, 033812 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: to be submitted for publication. Expressions equivalent to (37) but with different choices for the definition of the Green dyadic may be found, for instance, in T. Gruner and D.-G. Welsch, Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 53, 1818 (1996) and M.S. Tomas, Casimir force in absorbing monolayers. Phys. Rev. A 66, 052103 (2002)Google Scholar
  20. 20.
    Dzyaloshinskii, I.E., Pitaevskii, L.P.: Van der Waals forces in an inhomogeneous dielectric. Sov. Phys. JETP 9, 1282 (1959)Google Scholar
  21. 21.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165 (1961)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    See also A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover, N.Y., 1975)Google Scholar
  23. 23.
    Schwinger, J., DeRaad, L.L. Jr., Milton, K.A.: Casimir effect in dielectrics. Ann. Phys. (N.Y.) 115, 1 (1978)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Axilrod, B.M., Teller, E.: Interaction of the van der Waals type between three atoms. J.Chem. Phys. 11, 299 (1943)ADSCrossRefGoogle Scholar
  25. 25.
    van Kampen, N.G., Nijboer, B.R.A., Schram, K.: On the macroscopic theory of van der Waals forces. Phys. Lett. 26, 307 (1968)CrossRefGoogle Scholar
  26. 26.
    See, for instance, Reference [9], Sect. 8.3.Google Scholar
  27. 27.
    Sabisky, E.S., Anderson, C.H.: Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7, 790 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    Kats, E.I.: Influence of nonlocality effects on van der Waals interaction. Sov. Phys. JETP 46, 109 (1977)ADSGoogle Scholar
  29. 29.
    For a detailed review of the scattering approach see, for instance, the chapters by A. Lambrecht et al and S.J. Rahi et al in this volumeGoogle Scholar
  30. 30.
    Derjaguin, B.V., Rabinovich, Y.I., Churaev, N.V.: Direct measurement of molecular forces. Nature 272, 313 (1978) and references therein to related work of Derjaguin et alGoogle Scholar
  31. 31.
    It should be noted that Bressi et al managed to measure with about 15% precision the Casimir force between (nearly) parallel metallic plates: G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, “Measurement of the Casimir force between parallel metallic surfaces," Phys. Rev. Lett. 88, 041804 (2002)Google Scholar
  32. 32.
    Krause, D.E., Decca, R.S., López, D., Fischbach, E.: Experimental investigation of the Casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 98, 050403 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Sparnaay, M.J.: The historical background of the Casimir effect. In: Sarlemijn, A., Sparnaay, M.J. (eds) Physics in the Making, Elsevier, Amsterdam (1989)Google Scholar
  34. 34.
    Sparnaay, M.J.: Attractive forces between flat plates. Nature 180, 334 (1957)ADSCrossRefGoogle Scholar
  35. 35.
    Sparnaay, M.J: Measurements of attractive forces between flat plates. Physica 24, 751 (1958)ADSCrossRefGoogle Scholar
  36. 36.
    Lamoreaux, S.: Demonstration of the Casimir force in the 0.6 to 6 \(\mu \,\hbox{m}\) range. Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    See also S. Lamoreaux, The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201 (2005) and “Casimir forces: Still surprising after 60 years," Physics Today (February, 2007), 40-45Google Scholar
  38. 38.
    Mohideen, U., Roy, A.: Precision measurement of the Casimir force from 0.1 to 0.9 \(\mu \,\hbox{m}\). Phys. Rev. Lett. 81, 4549 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    See also M. Bordag, U. Mohideen, V.M. Mostepanenko, “New developments in the Casimir effect," Phys. Rep. 353, 1 (2001)Google Scholar
  40. 40.
    Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Oxford University Press, N.Y. (2009)MATHCrossRefGoogle Scholar
  41. 41.
    Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Chan, H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J., Capasso, F.: Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 211801 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Decca, R.S., López, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 504021 (2003)CrossRefGoogle Scholar
  44. 44.
    de Man, S., HeeckK. Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)CrossRefGoogle Scholar
  45. 45.
    de Man, S., Heeck, K., Smith, K., Wijngaarden, R.J., Iannuzzi, D.: Casimir force measurements in air: two birds with one stone. Int. J. Mod. Phys. A 25, 2231 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Sukenik, C.I., Boshier, M.G., Cho, D., Sandoghar, V., Hinds, E.A.: Measurement of the Casimir-Polder force. Phys. Rev. Lett. 70, 560 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    See for instance A.A. Feiler, L. Bergstrom, M.W. Rutland, “Superlubricity using repulsive van der Waals forces," Langmuir 24, 2274 (2008), and references therein.Google Scholar
  48. 48.
    Munday, J.N., Capasso, F., Parsegian, V.A.: Measured long-range Casimir-Lifshitz forces. Nature 457, 170 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Boyer, T.H.: Van der Waals forces and zero-point energy for dielectric and permeable materials. Phys. Rev. A 9, 2078 (1974)ADSCrossRefGoogle Scholar
  50. 50.
    Feinberg, G., Sucher, J.: General theory of the van der Waals interaction: A model-independent approach. Phys. Rev. A 2, 2395 (1970)ADSCrossRefGoogle Scholar
  51. 51.
    Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: Casimir-Lifshitz theory and metamaterials. Phys. Rev. Lett. 100, 183602 (2008); “Casimir interactions for anisotropic magnetodielectric metamaterials”, Phys. Rev. A 78, 032117 (2008)Google Scholar
  52. 52.
    Rahi, S.J., Kardar, M., Emig, T.: Constraints on stable equilibria with fluctuation-induced (Casimir) forces. Phys. Rev. Lett. 105, 070404 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    Boyer, T.H.: Quantum zero-point energy and long-range forces. Ann. Phys. (N.Y.) 56, 474 (1970)ADSCrossRefGoogle Scholar
  54. 54.
    Schaden, M.: Semiclassical estimates of electromagnetic Casimir self-energies of spherical and cylindrical metallic shells. Phys. Rev. A 82, 022113 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    See, for instance, Reference [9] and references therein.Google Scholar
  56. 56.
    Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D. 72, 021301(R) (2005)ADSGoogle Scholar
  57. 57.
    Fisher, M.E., de Gennes, P.-G.: Wall phenomena in a critical binary mixture. C.R. Acad. Sci. Paris B. 287, 209 (1978)Google Scholar
  58. 58.
    Garcia, R., Chan, M.H.W.: Critical Casimir effect near the \(^3\hbox{He}\)-\(^4\hbox{He}\) tricritical point. Phys. Rev. Lett. 88, 086101 (1978)ADSCrossRefGoogle Scholar
  59. 59.
    Hertlein, C., Helden, L., Gambassi, A., Dietrich, S., Bechinger, C.: Direct measurement of critical Casimir forces. Nature 451, 172 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Diego A. R. Dalvit
    • 1
  • Peter W. Milonni
    • 1
  • David C. Roberts
    • 1
  • Felipe S. S. Rosa
    • 1
  1. 1.Theoretical Division MS B213Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations