Optimizing the Robustness of Scale-Free Networks with Simulated Annealing

  • Pierre Buesser
  • Fabio Daolio
  • Marco Tomassini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6594)

Abstract

We study the robustness of Barabási-Albert scale-free networks with respect to intentional attacks to highly connected nodes. Using the simulated annealing optimization heuristic, we rewire the networks such that their robustness to network fragmentation is improved but without changing neither the degree distribution nor the connectivity of single nodes. We show that simulated annealing improves on the results previously obtained with a simple hill-climbing procedure. We also introduce a local move operator in order to facilitate actual rewiring and show numerically that the results are almost equally good.

Keywords

robustness simulated annealing scale-free networks optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  3. 3.
    Amaral, L.A.N., Scala, A., Barthélemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000)CrossRefGoogle Scholar
  4. 4.
    Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Cohen, R., Erez, K., Avraham, D.B., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001)CrossRefGoogle Scholar
  6. 6.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter Journal Complex Systems, 1695 (2006)Google Scholar
  7. 7.
    Holme, P., Kin, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)CrossRefGoogle Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefMATHGoogle Scholar
  11. 11.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010)Google Scholar
  12. 12.
    Schneider, C.M., Andrade, J.S., Shinbrot, T., Herrmann, H.J.: Protein interaction networks are fragile against random attacks and robust against malicious attacks. Tech. rep. (2010)Google Scholar
  13. 13.
    Schneider, C.M., Moreira, A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Onion-like network topology enhances robustness against malicious attacks. J. Stat. Mech. (2010) (to appear)Google Scholar
  14. 14.
    Schneider, J.J., Kirkpatrck, S.: Stochastic Optimization. Springer, Berlin (2006)Google Scholar
  15. 15.
    Valente, A.X.C.N., Sarkar, A., Stone, H.: 2-peak and 3-peak optimal complex networks. Phys. Rev. Lett. 92, 118702 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pierre Buesser
    • 1
  • Fabio Daolio
    • 1
  • Marco Tomassini
    • 1
  1. 1.Faculty of Business and Economics, Department of Information SystemsUniversity of LausanneLausanneSwitzerland

Personalised recommendations