Adapting NLP Tools and Frame-Semantic Resources for the Semantic Analysis of Ritual Descriptions

  • Nils Reiter
  • Oliver Hellwig
  • Anette Frank
  • Irina Gossmann
  • Borayin Maitreya Larios
  • Julio Rodrigues
  • Britta Zeller
Conference paper
Part of the Theory and Applications of Natural Language Processing book series (NLP)

Abstract

In this paper we investigate the use of standard natural language processing (NLP) tools and annotation methods for processing linguistic data from ritual science, which is concerned with the study of structure and variance of rituals. The work is embedded in an interdisciplinary project that addresses this study by applying empirical and quantitative computational linguistic analysis techniques to ritual descriptions from Indian rituals.We present motivation and prospects of such a computational approach to ritual structure research and sketch the overall project research plan. In particular, we motivate the choice of frame semantics as a theoretical framework for the semantic analysis of rituals. We discuss the special characteristics of the textual data and examine several domain adaptation strategies in order to use standard NLP resources and tools on the ritual domain. We also report on our workflows and methods for semi-automatic semantic annotation, which is used as a basis for the extraction of event chains. We close with some preliminary investigations on how to uncover regularities and differences of rituals.-

Keywords

ritual structure semantic analysis event chains domain adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagga, A., Baldwin, B.: Algorithms for Scoring Coreference Chains. In: Proceedings of the LREC 1998 Linguistic Coreference Workshop, pp. 536–566. Granada, Spain (1998)Google Scholar
  2. 2.
    Barzilay, R., Lee, L.: Learning to Paraphrase: An Unsupervised Approach Using Multiple-Sequence Alignment. In: Proceedings of the 2003 Human Language Technology Conference of the NAACL (HLT-NAACL ’03), pp. 16–23. Edmonton (2003)Google Scholar
  3. 3.
    Bögel, T., Funk, L., Kull, A.: ELAC: Ensemble Learning for ACR-Systems. Software project, University of Heidelberg, http://dakhma.net/elac (2010)
  4. 4.
    Bortz, J.: Statistik für Human- und Sozialwissenschaftler, 6. edn. Springer Medizin Verlag, Heidelberg (2005)Google Scholar
  5. 5.
    Burchardt, A., Frank, A., Pinkal, M.: Building Text Meaning Representations from Contextually Related Frames – A Case Study. In: Proceedings of the 6th International Workshop on Computational Semantics (IWCS ’05) (2005)Google Scholar
  6. 6.
    Burchardt, A., Pado, S., Spohr, D., Frank, A., Heid, U.: Constructing Integrated Corpus and Lexicon Models for Multi-Layer Annotations in OWL DL. Linguistic Issues in Language Technology 1(1), 1–33 (2008)Google Scholar
  7. 7.
    Chambers, N., Jurafsky, D.: Unsupervised Learning of Narrative Event Chains. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT ’08), pp. 789–797 (2008). URL http://www.aclweb.org/anthology/P/P08/P08-1090
  8. 8.
    Chambers, N., Jurafsky, D.: Unsupervised Learning of Narrative Schemas and their Participants. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP (ACL-IJCNLP ’09), pp. 602–610 (2009). URL http://www.aclweb.org/anthology/P/P09/P09-1068
  9. 9.
    Charniak, E.: A Maximum-Entropy-Inspired Parser. In: Proceedings of the 1st Conference of the North American Chapter of the Association for Computational Linguistics (NAACL ’00) (2000)Google Scholar
  10. 10.
    Daumé III, H.: Frustratingly Easy Domain Adaptation. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL ’07), pp. 256–263 (2007). URL http://www.aclweb.org/anthology/P07-1033
  11. 11.
    Denis, P.: New Learning Models for Robust Reference Resolution. Ph.D. thesis, University of Texas at Austin, Austin, TX, USA (2007)Google Scholar
  12. 12.
    Erk, K., Kowalski, A., Padó, S.: The SALSA Annotation Tool. In: Proceedings of the Workshop on Prospects and Advances in the Syntax/Semantics Interface (2003)Google Scholar
  13. 13.
    Erk, K., Padó, S.: Shalmaneser – a Toolchain for Shallow Semantic Parsing. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC ’06) (2006)Google Scholar
  14. 14.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  15. 15.
    Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to FrameNet. International Journal of Lexicography 16(3), 235–250 (2003)CrossRefGoogle Scholar
  16. 16.
    Finkel, J.R., Manning, C.D.: Hierarchical Bayesian Domain Adaptation. In: Proceedings of the 2009 Human Language Technologies Conference of the NAACL (HLT-NAACL ’09), pp. 602–610 (2009). URL http://www.aclweb.org/anthology/N/N09/N09-1068
  17. 17.
    Hellwig, O.: A Chronometric Approach to Indian Alchemical Literature. Literary and Linguistic Computing 24(4), 373–383 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hyland, K.: Hedging in Academic Writing and EAP Textbooks. English for Specific Purposes 13(3), 239–256 (1994)CrossRefGoogle Scholar
  19. 19.
    Jiang, J., Zhai, C.: Instance Weighting for Domain Adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL ’07), pp. 264–271 (2007). URL http://www.aclweb.org/anthology/P07-1034
  20. 20.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: A Large-Scale Classification of English Verbs. Journal of Language Resources and Evaluation 42(1), 21–40 (2008)CrossRefGoogle Scholar
  21. 21.
    Lappin, S., Leass, H.J.: An Algorithm for Pronominal Anaphora Resolution. Computational Linguistics 20(4), 535–561 (1994)Google Scholar
  22. 22.
    Light, M., Qiu, X.Y., Srinivasan, P.: The Language of Bioscience: Facts, Speculations, and Statements in Between. In: Proceedings of HLT-NAACL 2004 Workshop on Linking Biological Literature, Ontologies and Databases (BioLINK ’04), pp. 17–24 (2004)Google Scholar
  23. 23.
    Medlock, B., Briscoe, T.: Weakly Supervised Learning for Hedge Classification in Scientific Literature. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL ’07), pp. 992–999 (2007). URL http://www.aclweb.org/anthology/P/P07/P07-1125
  24. 24.
    Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology 48, 443–453 (1970)CrossRefGoogle Scholar
  25. 25.
    Poesio, M., Kabadjov, M.A.: A General-Purpose, Off-the-Shelf Anaphora Resolution Module: Implementation and Preliminary Evaluation. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC ’04) (2004)Google Scholar
  26. 26.
    Pradhan, S., Ward, W., Martin, J.H.: Towards Robust Semantic Role Labeling. Computational Linguistics, Special Issue on Semantic Role Labeling 34(2), 289–310 (2008)Google Scholar
  27. 27.
    Pradhan, S.S., Ward, W., Hacioglu, K., Martin, J.H., Jurafsky, D.: Shallow Semantic Parsing using Support Vector Machines. In: Proceedings of the 2004 Human Language Technology Conference of the NAACL (HLT-NAACL ’04) (2004)Google Scholar
  28. 28.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Wien (2007)Google Scholar
  29. 29.
    Recasens, M., Martí, T., Taulé, M., Màrquez, L., Sapena, E.: SemEval-2010 Task 1: Coreference Resolution in Multiple Languages. In: Proceedings of the HLT-NAACL 2009 Workshop on Semantic Evaluations: Recent Achievements and Future Directions (SEW ’09), pp. 70–75 (2009)Google Scholar
  30. 30.
    Regneri, M., Koller, A., Pinkal, M.: Learning script knowledge with web experiments. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL ’10), pp. 979–988. Uppsala, Sweden (2010). URL http://www.aclweb.org/anthology/P10-1100
  31. 31.
    Reiter, N., Hellwig, O., Mishra, A., Frank, A., Burkhardt, J.: Using NLP methods for the Analysis of Rituals. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC ’10) (2010)Google Scholar
  32. 32.
    Reiter, N., Hellwig, O., Mishra, A., Gossmann, I., Larios, B.M., Rodrigues, J., Zeller, B., Frank, A.: Adapting Standard NLP Tools and Resources to the Processing of Ritual Descriptions. In: Proceedings of ECAI 2010 Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH ’10) (2010). URL http://www.cl.uni-heidelberg.de/~reiter/publications/Reiter2010b.pdf
  33. 33.
    Ruppenhofer, J., Sporleder, C., Morante, R., Baker, C., Palmer, M.: SemEval-2010 Task 10: Linking Events and Their Participants in Discourse. In: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions (SEW ’09), pp. 106–111 (2009)Google Scholar
  34. 34.
    Sang, E.F.T.K., Buchholz, S.: Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th conference on Computational Natural Language Learning (CoNLL ’00 and LLL ’00) (2000)Google Scholar
  35. 35.
    Soon, W.M., Lim, D.C.Y., Ng, H.T.: A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics 27(4), 521–544 (2001)CrossRefGoogle Scholar
  36. 36.
    Szarvas, G., Vincze, V., Farkas, R., Csirik, J.: The BioScope Corpus: Annotation for Negation, Uncertainty and their Scope in Biomedical Texts. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing (BioNLP ’08), pp. 38–45 (2008). URL http://www.aclweb.org/anthology/W/W08/W08-0606
  37. 37.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix cxshoice. Nucleic Acids Research 22(22), 4673–4680 (1994)CrossRefGoogle Scholar
  38. 38.
    Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In: Proceedings of the 2003 Human Language Technologies Conference of the NAACL (HLT-NAACL ’03), pp. 252–259 (2003)Google Scholar
  39. 39.
    Verhagen, M., Pustejovsky, J.: Temporal Processing with the TARSQI Toolkit. In: Proceedings of the 22nd International Conference on Computational Linguistics: Demonstration Papers (COLING ’08), pp. 189–192. Manchester, UK (2008). URL http://www.aclweb.org/anthology/C08-3012
  40. 40.
    Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti, A.: BART: A Modular Toolkit for Coreference Resolution. In: Companion Volume of the Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics (ACL ’08), pp. 9–12 (2008)Google Scholar
  41. 41.
    Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L.: A Model-Theoretic Coreference Scoring Scheme. In: Proceedings of the 6th Conference on Message Understanding (MUC6 ’95), pp. 45–52. Morristown, NJ, USA (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nils Reiter
    • 1
  • Oliver Hellwig
    • 2
  • Anette Frank
    • 1
  • Irina Gossmann
    • 1
  • Borayin Maitreya Larios
    • 2
  • Julio Rodrigues
    • 1
  • Britta Zeller
    • 1
  1. 1.Department of Computational LinguisticsHeidelberg UniversityHeidelbergGermany
  2. 2.South Asia InstituteHeidelberg UniversityHeidelbergGermany

Personalised recommendations