Advertisement

Thermal Face Recognition Using Local Interest Points and Descriptors for HRI Applications

  • Gabriel Hermosilla
  • Patricio Loncomilla
  • Javier Ruiz-del-Solar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)

Abstract

In this article a robust thermal face recognition methodology based on the use of local interest points and descriptors, is proposed. The methodology consists of the following stages: face segmentation, vascular network detection, wide baseline matching using local interest points and descriptors, and classification. The main contribution of this work is the use of a standard wide baseline matching methodology for the comparison of vascular networks from thermal face images. The proposed methodology is validated using a database of thermal images. This work could be of high interest for HRI applications related with the visual recognition of humans, as the ones included in the RoboCup @Home league, because the use of thermal images may overcome limitations such as dependency on illumination conditions and facial expressions.

Keywords

Face Recognition Thermal Images Blood Vessels Matching SIFT Matching RoboCup @Home 

References

  1. 1.
    Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face Recognition by Humans: 19 Results All Computer Vision Researchers Should Know About. Proc. of the IEEE 94(11), 1948–1962 (2006)CrossRefGoogle Scholar
  2. 2.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)Google Scholar
  3. 3.
    Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39, 1725–1745 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proceedings of the IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  5. 5.
    Face Recognition Homepage (January 2008), http://www.face-rec.org/
  6. 6.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  7. 7.
    Ruiz-del-Solar, J., Verschae, R., Correa, M.: Recognition of Faces in Unconstrained Environments: A Comparative Study. EURASIP Journal on Advances in Signal Processing (Recent Advances in Biometric Systems: A Signal Processing Perspective) 2009, article ID 184617, 19 pages (2009)zbMATHGoogle Scholar
  8. 8.
    Socolinsky, D.A., Selinger, A.: A comparative Analysis of face recognition performance with visible and thermal infrared imagery. In: Proc. ICPR 2002, Quebec, Canada (August 2002)Google Scholar
  9. 9.
    Selinger, A., Socolinsky, D.: Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A Comparative Study, Tech. Rep., Equinox Corporation (2001)Google Scholar
  10. 10.
    Desa, S., Hati, S.: IR and Visible Face Recognition using Fusion of Kernel Based Features. In: ICPR 2008, pp. 1–4 (2008)Google Scholar
  11. 11.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous Object Recognition and Segmentation by Image Exploration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 40–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision Conf., Manchester, UK, pp. 147–151 (1998)Google Scholar
  13. 13.
    Lowe, D.: Local feature view clustering for 3D object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 682–688. IEE Press, New York (2001)Google Scholar
  14. 14.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Loncomilla, P., Ruiz-del-Solar, J.: A Fast Probabilistic Model for Hypothesis Rejection in SIFT-Based Object Recognition. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. Journal of Computer Vision 60(1), 63–96 (2004)CrossRefGoogle Scholar
  17. 17.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Machine Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  18. 18.
    Buddharaju, P., Pavlidis, I.: Multi-Spectral Face Recognition - Fusion of Visual Imagery with Physiological Information. In: Face Biometrics for Personal Identification: Multi-Sensory Multi-Modal Systems, pp. 91–108. Springer, Heidelberg (January 2007)CrossRefGoogle Scholar
  19. 19.
    Buddharaju, P., Pavlidis, I., Manohar, C.: ‘Face Recognition Beyond the Visible Spectrum. In: Advances in Biometrics: Sensors, Algorithms and Systems, pp. 157–180. Springer, Heidelberg (October 2007)Google Scholar
  20. 20.
    Hermosilla, G., Ruiz-del-Solar, J., Verschae, R., Correa, M.: Face Recognition using Thermal Infrared Images for Human-Robot Interaction Applications: A Comparative Study. In: 6th IEEE Latin American Robotics Symposium – LARS 2009, Valparaíso, Chile (CD Proceedings) (October 29-30, 2009)Google Scholar
  21. 21.
    Ruiz del Solar, J., Loncomilla, P.: Robot Head Pose Detection and Gaze Direction Determination Using Local Invariant Features. Advanced Robotics 23(3), 305–328 (2009)CrossRefGoogle Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gabriel Hermosilla
    • 1
    • 2
  • Patricio Loncomilla
    • 1
    • 2
  • Javier Ruiz-del-Solar
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile
  2. 2.Center for Mining TechnologyUniversidad de ChileChile

Personalised recommendations