Advertisement

Realistic Simulation of Laser Range Finder Behavior in a Smoky Environment

  • Okke Formsma
  • Nick Dijkshoorn
  • Sander van Noort
  • Arnoud Visser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)

Abstract

The Urban Search and Rescue Simulation used for RoboCup lacks realistic response of laser range finders on smoke. In this paper, the behavior of a Hokuyo and Sick laser range finder in a smoky environment is studied. The behavior of the lasers is among others a function of the visibility level, and in this article this function is quantified into an explicit model. This model is implemented in a simulation environment which is the basis of the Virtual Robot competition of the RoboCup Rescue League. The behavior of both real and virtual laser range finders is compared in a number of validation tests. The validation tests show that the behavior of the laser range finders in the simulation is consistent with the real world.

Keywords

Laser Range Laser Range Finder Smoke Plume Smoke Density Smoke Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and Rescue Robotics. In: Handbook of Robotics, pp. 1151–1173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Jacoff, A., Messina, E.: Urban search and rescue robot performance standards: Progress update. In: Proceedings of the 2007 SPIE Defense and Security Symposium, vol. 6561 Unmanned Systems Technology IX, p. 65611L (2007)Google Scholar
  3. 3.
    Balakirsky, S., Falco, J., Proctor, F., Velagapudi, P.: USARSim Porting to Unreal Tournament 3. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2009), Workshop on Robots, Games, and Research: Success stories in USARSim, pp. 74–79. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Carpin, S., Stoyanov, T., Nevatia, Y.: Quantitative Assessments of USARSim Accuracy. In: Madhavan, R., Messina, E. (eds.) Proc. of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, National Institute of Standards and Technology, pp. 111–118 (2006)Google Scholar
  5. 5.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the Gap between Simulation and Reality in Urban Search and Rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Schmits, T., Visser, A.: An Omnidirectional Camera Simulation for the USARSim World. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) CANS 2008. LNCS (LNAI), vol. 5339, pp. 296–307. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Pepper, C., Balakirsky, S., Scrapper, C.: Robot Simulation Physics Validation. In: Proc. of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, National Institute of Standards and Technology, pp. 97–104 (2007)Google Scholar
  8. 8.
    Balakirsky, S., Carpin, S., Visser, A.: Evaluation of the robocup 2009 virtual robot rescue competition. In: Proc. of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, National Institute of Standards and Technology (2009)Google Scholar
  9. 9.
    Boehler, W., Vicent, M.B., Marbs, A.: Investigating Laser Scanner Accuracy. In: Proceedings of the XIXth International Symposium, CIPA 2003: new perspectives to save cultural heritage. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV 5/C15, pp. 696–701 (2003)Google Scholar
  10. 10.
    Pascoal, J., Marques, L., de Almeida, A.T.: Assessment of laser range finders in risky environments. In: Proceedings of the EURON/IARP International Workshop on Robotics for Risky Interventions and Surveillance of the Environment (2008)Google Scholar
  11. 11.
    Peynot, T., Scheding, S.: Datasets for the evaluation of multi-sensor perception in natural environments with challenging conditions. In: Euron GEM Sig Workshop on Good Experimental Methodology in Robotics at RSS (2009)Google Scholar
  12. 12.
    Donate, A., Ribeiro, E.: Viewing scenes occluded by smoke. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 750–759. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Okke Formsma
    • 1
  • Nick Dijkshoorn
    • 1
  • Sander van Noort
    • 1
  • Arnoud Visser
    • 1
  1. 1.Intelligent Systems Laboratory AmsterdamUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations