Advertisement

Hierarchical Multi-robot Coordination

  • Viktor Seib
  • David Gossow
  • Sebastian Vetter
  • Dietrich Paulus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)

Abstract

The complexity and variety of household chores creates conflicting demands on the technical design of domestic robots. One solution for this problem is the coordination of several specialized robots based on the master-slave principle. One robot acts as a master system, tracking and remotely controlling the slave robots. This way, only the master robot needs to be equipped with sophisticated sensors and computing hardware. We implemented a tracking system using an infra-red camera for the master and active markers on the slave robot. The master system is able to interact with the user using natural language. It builds a map of its environment automatically using a laser range finder. It can track a cleaning robot for which we use the commercially available platform “Roomba” by iRobot. The master safely navigates it to a given destination, avoiding obstacles. We successfully demonstrated the system during the RoboCup@Home competitions 2009 in Graz, Austria. We evaluate the performance of the two systems and describe the accuracy of localization and navigation.

Keywords

Path Planning Multiple Robot Scene Graph Slave Robot Cleaning Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BMF+00]
    Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: IEEE International Conference on Robotics and Automation (2000)Google Scholar
  2. [CTF05]
    Cassinis, R., Tampalini, F., Fedrigotti, R.: Active markers for outdoor and indoor robot localization (2005)Google Scholar
  3. [FBE+09]
    Faber, F., Bennewitz, M., Eppner, C., Görög, A., Gonsior, C., Joho, D., Schreiber, M., Behnke, S.: The humanoid museum tour guide robotinho (2009)Google Scholar
  4. [How06]
    Howard, A.: Multi-robot simultaneous localization and mapping using particle filters (2006)Google Scholar
  5. [IB98]
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  6. [JN02]
    Jäger, M., Nebel, B.: Dynamic decentralized area partitioning for cooperating cleaning robots (2002)Google Scholar
  7. [Kur06]
    Kurt, T.E.: Hacking Roomba: ExtremeTech. John Wiley & Sons, Inc., New York (2006)Google Scholar
  8. [LAL+04]
    Lemaire, T., Alami, R., Lacroix, S., LAAS, C., Toulouse, F.: A distributed tasks allocation scheme in multi-UAV context. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 4 (2004)Google Scholar
  9. [NdCVVR97]
    Neumann de Carvalho, R., Vidal, H.A., Vierira, P., Ribeiro, M.I.: Complete coverage path planning and guidance for cleaning robots. In: IEEE Int. Symposium on Industrial Electronics (July 1997)Google Scholar
  10. [Pel08]
    Pellenz, J.: Mapping and map scoring at the robocuprescue competition. In: Quantitative Performance Evaluation of Navigation Solutions for Mobile Robots (RSS 2008, Workshop CD) (2008)Google Scholar
  11. [PGP09]
    Pellenz, J., Gossow, D., Paulus, D.: Robbie: A fully autonomous robot for robocup rescue. Advanced Robotics (Robotics Society of Japan) 23(9), 1159–1177 (2009)CrossRefGoogle Scholar
  12. [PP09]
    Pellenz, J., Paulus, D.: Stable mapping using a hyper particle filter. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 252–263. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. [SCPZ04]
    Seop, J., Choi, Y.H., Park, J.B., Zheng, Y.F.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Transactions on Industrial Electronics 51(3), 6 (2004)Google Scholar
  14. [SGK+09]
    Stückler, J., Gräve, K., Kläß, J., Muszynski, S., Schreiber, M., Tischler, O., Waldukat, R., Behnke, S.: Dynamaid: Towards a personal robot that helps with household chores. In: Proceedings of RSS 2009 Workshop on Mobile Manipulation in Human Environments, Seattle (June 2009)Google Scholar
  15. [TD07]
    Tribelhorn, B., Dodds, Z.: Evaluating the roomba: A low-cost, ubiquitous platform for robotics research and education (2007)Google Scholar
  16. [TPM03]
    Tavakoli, M., Patel, R.V., Moallem, M.: A force reflective master-slave system for minimally invasive surgery. In: Proceedings of the 2003 IEEE/RSJ Int. Conference on Intelligent Robots and Systems (October 2003)Google Scholar
  17. [VV03]
    Vail, D., Veloso, M.: Multi-robot dynamic role assignment and coordination through shared potential fields (2003)Google Scholar
  18. [WP07]
    Wirth, S., Pellenz, J.: Exploration transform: A stable exploring algorithm for robots in rescue environments. In: Workshop on Safety, Security, and Rescue Robotics, pp. 1–5 (September 2007), http://sied.dis.uniroma1.it/ssrr07/
  19. [YTEM02]
    Yamano, I., Takemura, K., Endo, K., Maeno, T.: Method for controlling master-slave robots using switching and elastic elements. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation (May 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Viktor Seib
    • 1
  • David Gossow
    • 1
  • Sebastian Vetter
    • 1
  • Dietrich Paulus
    • 1
  1. 1.Active Vision GroupUniversity of Koblenz-LandauKoblenzGermany

Personalised recommendations