A Realistic Simulation Tool for Testing Face Recognition Systems under Real-World Conditions

  • Mauricio Correa
  • Javier Ruiz-del-Solar
  • S. Isao Parra-Tsunekawa
  • Rodrigo Verschae
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)


In this article, a tool for testing face recognition systems under uncontrolled conditions is proposed. The key elements of this tool are a simulator and real face and background images taken under real-world conditions with different acquisition angles. Inside the simulated environment, an observing agent, the one with the ability to recognize faces, can navigate and observe the real face images, at different distances, angles and with indoor or outdoor illumination. During the face recognition process, the agent can actively change its viewpoint and relative distance to the faces in order to improve the recognition results. The simulation tool provides all functionalities to the agent (navigation, positioning, face’s image composing under different angles, etc.), except the ones related with the recognition of faces. This tool could be of high interest for HRI applications related with the visual recognition of humans, as the ones included in the RoboCup @Home league. It allows comparing and quantifying the face recognition capabilities of service robots under exactly equal working conditions. It could be a complement to existing tests in the RoboCup @Home league. The applicability of the proposed tool is validated in the comparison of three state of the art face recognition methods.


Face Recognition Face Recognition Benchmarks Evaluation Methodologies RoboCup @Home 


  1. 1.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)Google Scholar
  2. 2.
    Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39, 1725–1745 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proceedings of the IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  4. 4.
    Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey. Pattern Recognition Letters 28, 1885–1906 (2007)CrossRefGoogle Scholar
  5. 5.
    Face Recognition Home Page,
  6. 6.
    Call for Papers Special Issue in Real-World Face Recognition. IEEE Trans. on PAMI,
  7. 7.
    Faces in Real-Life Images Workshop, ECCV 2008 (October 17, 2009),
  8. 8.
    Labeled Faces in the Wild Database,
  9. 9.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. University of Massachusetts, Amherst, Technical Report 07-49 (October 2007)Google Scholar
  10. 10.
    Ruiz-del-Solar, J., Verschae, R., Correa, M.: Recognition of Faces in Unconstrained Environments: A Comparative Study. EURASIP Journal on Advances in Signal Processing (Recent Advances in Biometric Systems: A Signal Processing Perspective) 2009, article ID 184617, 19 pages (2009)zbMATHGoogle Scholar
  11. 11.
    Jones, M.: Face Recognition: Where We Are and Where To Go From Here, Mitsubishi Electric Research Laboratories Technical Report TR2009-023 (June 2009)Google Scholar
  12. 12.
    Face Recognition Grand Challenge, Official website
  13. 13.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  14. 14.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proc. of the IEEE Conf. Computer Vision and Pattern Recognition – CVPR 2005, vol. 1, pp. 947–954 (2005)Google Scholar
  15. 15.
    Gross, R.: Face Databases. In: Li, S., Jain, A.K. (eds.) Handbook of Face Recognition, pp. 301–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Yale University Face Image Database, publicly
  17. 17.
  18. 18.
  19. 19.
    Flynn, P.J., Bowyer, K.W., Phillips, P.J.: Assessment of time dependency in face recognition: An initial study. In: Audio and Video-Based Biometric Person Authentication, pp. 44–51 (2003)Google Scholar
  20. 20.
  21. 21.
    PIE Database. Basic infomation in,
  22. 22.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. on Patt. Analysis and Machine Intell. 28(12), 2037–2041 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zou, J., Ji, Q., Nagy, G.: A Comparative Study of Local Matching Approach for Face Recognition. IEEE Trans. on Image Processing 16(10), 2617–2628 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: A Robust Local Image Descriptor. IEEE Trans. on Patt. Analysis and Machine Intell., TPAMI-2008-09-0620 (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mauricio Correa
    • 1
    • 2
  • Javier Ruiz-del-Solar
    • 1
    • 2
  • S. Isao Parra-Tsunekawa
    • 1
    • 2
  • Rodrigo Verschae
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile
  2. 2.Advanced Mining Technology CenterUniversidad de ChileChile

Personalised recommendations