Advertisement

Genetic Algorithms Applied to Spectral Index Extraction

  • Diego Ordóñez
  • Carlos Dafonte
  • Minia Manteiga
  • Bernardino Arcay
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 343)

Abstract

Within the scope of computational astropysics, this work presents an experimental study on the application of genetic algorithms to the automated extraction of relevant information from stellar spectra. The input data are a dataset obtained through the collaboration of our research group with the Gaia project of the European Space Agency. The results show that predictions based on spectral indices, which in turn were extracted by means of genetic algorithms, have accuracy levels that are very similar to those obtained through wavelength information. Working with a reduced dataset also implies the reduction of complexity and increased performance.

Keywords

Genetic algorithm Artificial neural network Connectionist systems FFT Wavelet transform GAIA mission Stellar spectra Stellar parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodríguez, A., Arcay, B., Manteiga, M., Carricajo, I.: An automated knowledge-based analysis and classification of stellar spectra using fuzzy reasoning. Expert Systems with Applications 27(2), 237–244 (2004)CrossRefGoogle Scholar
  2. 2.
    Dafonte, C., Rodríguez, A., Arcay, B., Carricajo, I., Manteiga, M.: A comparative study of KBS, ANN and statistical clustering techniques for unattended stellar classification. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 566–577. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Von Hippel, T., Allende, C., Sneden, C.: Automated stellar spectral classification and parameterization for the masses. In: The Garrison Festschrift Conference Proceedings (June 2002)Google Scholar
  4. 4.
    Bailer-Jones, C.A.L.: A method for exploiting domain information in astrophysical parameter estimation. In: Astronomical Data Analysis Software and Systems XVII. ASP Conference Series, vol. 30 (2008)Google Scholar
  5. 5.
    Bailer-Jones, C.A.L.: Stellar parameters from very low resolution spectra and medium band filters. Astronomy and Astrophysics 357, 197–205 (2000)Google Scholar
  6. 6.
    Fiorentin, P.R., Bailer-Jones, C.A.L., Lee, Y.S., Beers, T.C., Sivarani, T., Wilhelm, R., Allende, C., Norris, J.E.: Estimation of stellar atmospheric parameters from sdss/segue spectra. Astronomy and Astrophysics 467, 1373–1387 (2007)CrossRefGoogle Scholar
  7. 7.
    Harrinder, P., Gulati, R.K., Gupta, R.: Stellar spectral classification using principal component analysis and artificial neural networks. MNRAS 295, 312–318 (1998)CrossRefGoogle Scholar
  8. 8.
    Hu, Y.-C.: Nonadditive grey single-layer perceptron with choquet integral for pattern classification problems using genetic algorithms. Neurocomputing 72, 331–340 (2008)CrossRefGoogle Scholar
  9. 9.
    Rooij, A., Jain, L., Johnson, R.: Neural Network Training Using Genetic Algorithms. World Scientific Pub. Co Inc., Singapore (1996)Google Scholar
  10. 10.
    Kinnebrock, W.: Accelerating the standard backpropagation method using a genetic approach. Neurocomputing 91(3), 731–735 (1994)Google Scholar
  11. 11.
    Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. Proc. IEEE Trans. on Pattern Anal. and Math. intel. 11(7), 674–693 (1989)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ordóñez, D., Dafonte, C., Manteiga, M., Arcay, B.: Parameterization of rvs synthetic stellar spectra for the esa gaia mission: Study of the optimal domain for ann training. Expert Systems With Applications 37(2), 1719–1727 (2009)CrossRefGoogle Scholar
  13. 13.
    Recio-Blanco, A., de Laverny, P., Plez, B.: Rvs-arb-001. European Space Agency technique note (2005)Google Scholar
  14. 14.
    Ordóñez, D., Dafonte, C., Arcay, B., Manteiga, M.: A canonical integrator environment for the development of connectionist systems. Dynamics of continuous, Discrete and Impulsive Systems 14, 580–585 (2007)Google Scholar
  15. 15.
    Down, T., Pocock, M.: The biojava projectGoogle Scholar
  16. 16.
    Kaempf, T.A., Willemsen, P.G., Bailer-Jones, C.A.L., de Boer, K.S.: Parameterisation of rvs spectra with artificial neural networks first steps. In: 10th RVS Workshop, Cambridge (September 2005)Google Scholar
  17. 17.
    Gulati, R.K., Ramirez, F., Fuentes, O.: Prediction of stellar atmospheric parameters using instance-based machine learning and genetic algorithms. Experimental Astronomy 12(3), 163–178 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Diego Ordóñez
    • 1
  • Carlos Dafonte
    • 1
  • Minia Manteiga
    • 2
  • Bernardino Arcay
    • 1
  1. 1.Information and Communications Technologies Department, Faculty of Computer ScienceUniversity of La CoruñaA CoruñaSpain
  2. 2.Department of Navigation and Earth SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations