The Generative Capacity of the Lambek–Grishin Calculus: A New Lower Bound

  • Matthijs Melissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5591)

Abstract

The Lambek–Grishin calculus LG is a categorial type logic obtained by adding a family of connectives Open image in new window dual to the family { ⊗ , /, \}, and adding interaction postulates between the two families of connectives thus obtained. In this paper, we prove a new lower bound on the generative capacity of LG, namely the class of languages that are the intersection of a context-free language and the permutation closure of a context-free language. This implies that LG recognizes languages like the MIX language, e.g. the permutation closure of Open image in new window, and Open image in new window, which can not be recognized by tree adjoining grammars.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Language 29, 47–58 (1953)CrossRefMATHGoogle Scholar
  2. 2.
    Boullier, P.: Range concatenation grammars. In: New Developments in Parsing Technology, pp. 269–289. Kluwer Academic Publishers, Norwell (2004)CrossRefGoogle Scholar
  3. 3.
    Buszkowski, W.: Generative capacity of nonassociative Lambek calculus. Bulletin of Polish Academy of Sciences: Mathematics 34, 507–516 (1986)MathSciNetMATHGoogle Scholar
  4. 4.
    Castaño, J.M.: Global index grammars and descriptive power. J. of Logic, Lang. and Inf. 13(4), 403–419 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Grishin, V.N.: On a generalization of the Ajdukiewicz-Lambek system. In: Mikhailov, A.I. (ed.) Studies in Non-classical Logics and Formal Systems, pp. 315–343. Nauka, Moscow (1983)Google Scholar
  6. 6.
    Huybregts, R.: The weak inadequacy of context-free phrase structure grammars. In: Trommelen, M., de Haan, G.J., Zonneveld, W. (eds.) Van Periferie Naar Kern, pp. 81–99. Foris Publications, Dordrecht (1984)Google Scholar
  7. 7.
    Joshi, A., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Handbook of Formal Languages. Beyond Words, vol. 3, pp. 69–123. Springer, Inc., New York (1997)CrossRefGoogle Scholar
  9. 9.
    Kandulski, M.: The equivalence of nonassociative Lambek categorial grammars and context-free grammars. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 34(1), 41–52 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lambek, J.: On the calculus of syntactic types. In: Jacobsen, R. (ed.) Structure of Language and its Mathematical Aspects. Proceedings of Symposia in Applied Mathematics, vol. XII, pp. 166–178. American Mathematical Society, Providence (1961)CrossRefGoogle Scholar
  11. 11.
    Melissen, M.: Lambek–Grishin calculus extended to connectives of arbitrary arity. In: Proceedings of the 20th Belgian-Netherlands Conference on Artificial Intelligence (2008)Google Scholar
  12. 12.
    Moortgat, M.: Symmetries in natural language syntax and semantics: The lambek-grishin calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 264–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Moot, R.: Lambek grammars, tree adjoining grammars and hyperedge replacement grammars. In: Proceedings of the TAG+ Conference, HAL - CCSD (2008)Google Scholar
  14. 14.
    Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)CrossRefMATHGoogle Scholar
  15. 15.
    Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  16. 16.
    Sipser, M.: Introduction to the Theory of Computation. Course Technology (December 1996)Google Scholar
  17. 17.
    Van Benthem, J.: Language in action: categories, lambdas and dynamic logic. Studies in logic and the foundations of mathematics, vol. 130. North-Holland, Amsterdam (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthijs Melissen
    • 1
    • 2
  1. 1.Universiteit UtrechtThe Netherlands
  2. 2.Université de LuxembourgLuxembourg

Personalised recommendations