Advertisement

Visual Exploration of Health Information for Children

  • Frans van der Sluis
  • Sergio Duarte Torres
  • Djoerd Hiemstra
  • Betsy van Dijk
  • Frea Kruisinga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

Children experience several difficulties retrieving information using current Information Retrieval (IR) systems. Particularly, children struggle to find the right keywords to construct queries given their lack of domain knowledge. This problem is even more critical in the case of the specialized health domain. In this work we present a novel method to address this problem using a cross-media search interface in which the textual data is searched through visual images. This solution aims to solve the recall and recognition problem which is salient for health information, by replacing the need for a vocabulary with the easy task of recognising the different body parts.

Keywords

Body Part Information Retrieval System Visual Exploration Visual Metaphor Basic Level Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Alessandro, D.M., Kingsley, P., Johnson-West, J.: The Readability of Pediatric Patient Education Materials on the World Wide Web. Arch. Pediatr. Adolesc. Med. 155, 807–812 (2001)CrossRefGoogle Scholar
  2. 2.
    Van der Sluis, F., Van Dijk, E.M.A.G.: A closer look at children’s information retrieval usage: Towards child-centered relevance. In: Proceedings of the Workshop on Accessible Search Systems held at the 33st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York (2010)Google Scholar
  3. 3.
    Bilal, D.: Children’s use of the yahooligans! web search engine: 1. cognitive, physical, and affective behaviors on fact-based search tasks. Journal of the American Society for Information Science 51, 646–665 (2000)CrossRefGoogle Scholar
  4. 4.
    Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM 30, 964–971 (1987)CrossRefGoogle Scholar
  5. 5.
    Hassan-Montero, Y., Víctor Herrero-solana, A.: Improving tag-clouds as visual information retrieval interfaces. In: Merída, InSciT 2006 Conference (2006)Google Scholar
  6. 6.
    He, J., de Rijke, M.: An exploration of learning to link with wikipedia: Features, methods and training collection. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 324–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: Pftijah: text search in an xml database system. In: Proceedings of the 2nd International Workshop on Open Source Information Retrieval (OSIR), Seattle, WA, USA, Ecole Nationale Supérieure des Mines de Saint-Etienne, pp. 12–17 (2006)Google Scholar
  8. 8.
    Clinton, D.: Specification opensearch 1.1 draft 4 (2007)Google Scholar
  9. 9.
    Hoenkamp, E.: Why information retrieval needs cognitive science: A call to arms. In: Proceedings of the 27th Annual Conference of the Cognitive Science Society, vol. 2005, pp. 965–970 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Frans van der Sluis
    • 1
  • Sergio Duarte Torres
    • 2
  • Djoerd Hiemstra
    • 2
  • Betsy van Dijk
    • 1
  • Frea Kruisinga
    • 3
  1. 1.Department of Human Media InteractionUniversity of TwenteEnschedeThe Netherlands
  2. 2.Database GroupUniversity of TwenteEnschedeThe Netherlands
  3. 3.Emma Children HospitalUniversity Medical Center AmsterdamThe Netherlands

Personalised recommendations