The Importance of the Depth for Text-Image Selection Strategy in Learning-To-Rank

  • David Buffoni
  • Sabrina Tollari
  • Patrick Gallinari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

We examine the effect of the number documents being pooled, for constructing training sets, has on the performance of the learning-to-rank (LTR) approaches that use it to build our ranking functions. Our investigation takes place in a multimedia setting and uses the ImageCLEF photo 2006 dataset based on text and visual features. Experiments show that our LTR algorithm, OWPC,outperforms other baselines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aslam, J.A., Kanoulas, E., Pavlu, V., Savev, S., Yilmaz, E.: Document selection methodologies for efficient and effective learning-to-rank. In: ACM SIGIR (2009)Google Scholar
  2. 2.
    Clough, P., Grubinger, M., Deselaers, T., Hanbury, A., Müller, H.: Overview of the imageCLEF 2006 photographic retrieval and object annotation tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 579–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Joachims, T.: Optimizing search engines using clickthrough data. In: KDD (2002)Google Scholar
  4. 4.
    Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at trec. In: TREC, pp. 21–30 (1992)Google Scholar
  5. 5.
    Tollari, S., Glotin, H.: Web image retrieval on imageval: Evidences on visualness and textualness concept dependency in fusion model. In: ACM CIVR (2007)Google Scholar
  6. 6.
    Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered weighted pairwise classification. In: ICML, pp. 1057–1064 (2009)Google Scholar
  7. 7.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18 (1988)Google Scholar
  8. 8.
    Yates, R.B., Ribeiro-Neto, B.: Modern Information Retrieval. A. Wesley, Reading (1999)Google Scholar
  9. 9.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22, 179–214 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Buffoni
    • 1
  • Sabrina Tollari
    • 1
  • Patrick Gallinari
    • 1
  1. 1.LIP6Université Pierre et Marie Curie - Paris 6ParisFrance

Personalised recommendations