Towards Quantum-Based DB+IR Processing Based on the Principle of Polyrepresentation

  • David Zellhöfer
  • Ingo Frommholz
  • Ingo Schmitt
  • Mounia Lalmas
  • Keith van Rijsbergen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

The cognitively motivated principle of polyrepresentation still lacks a theoretical foundation in IR. In this work, we discuss two competing polyrepresentation frameworks that are based on quantum theory. Both approaches support different aspects of polyrepresentation, where one is focused on the geometric properties of quantum theory while the other has a strong logical basis. We compare both approaches and outline how they can be combined to express further aspects of polyrepresentation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frommholz, I., Larsen, B., Piwowarski, B., Lalmas, M., Ingwersen, P., van Rijsbergen, K.: Supporting Polyrepresentation in a Quantum-inspired Geometrical Retrieval Framework. In: Proceedings of the 2010 Information Interaction in Context Symposium, pp. 115–124. ACM, New Brunswick (2010)Google Scholar
  2. 2.
    Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context. Springer-11645 /Dig. Serial. Springer, Dordrecht (2005), http://dx.doi.org/10.1007/1-4020-3851-8 MATHGoogle Scholar
  3. 3.
    Larsen, B., Ingwersen, P., Kekäläinen, J.: The polyrepresentation continuum in IR. In: IIiX: Proceedings of the 1st International Conference on Information Interaction in Context, pp. 88–96. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Melucci, M.: A basis for information retrieval in context. ACM Transactions on Information Systems (TOIS) 26(3) (2008), http://portal.acm.org/citation.cfm?id=1361687
  5. 5.
    van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, New York (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Schmitt, I.: QQL: A DB&IR Query Language. The VLDB Journal 17(1), 39–56 (2008), http://cat.inist.fr/?aModele=afficheN&cpsidt=20038185 CrossRefGoogle Scholar
  7. 7.
    Zellhöfer, D.: Inductive User Preference Manipulation for Multimedia Retrieval. In: Böszörmenyi, L., Burdescu, D., Davies, P., Newell, D. (eds.) Proc. of the Second International Conference on Advances in Multimedia (2010)Google Scholar
  8. 8.
    Zellhöfer, D., Schmitt, I.: A Preference-based Approach for Interactive Weight Learning: Learning Weights within a Logic-Based Query Language. In: Distributed and Parallel Databases (2009), doi:10.1007/s10619-009-7049-4Google Scholar
  9. 9.
    Zellhöfer, D., Schmitt, I.: Approaching Multimedia retrieval from a Polyrepresentative Perspective. In: Proc. of the 8th International Workshop on Adaptive Multimedia Retrieval (2010) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Zellhöfer
    • 1
  • Ingo Frommholz
    • 2
  • Ingo Schmitt
    • 1
  • Mounia Lalmas
    • 3
  • Keith van Rijsbergen
    • 2
  1. 1.Department of Computer ScienceBrandenburg University of Technology CottbusCottbusGermany
  2. 2.School of Computing ScienceUniversity of GlasgowGlasgowScotland
  3. 3.Yahoo! ResearchSpain

Personalised recommendations