Improving Tag-Based Recommendation by Topic Diversification

  • Christian Wartena
  • Martin Wibbels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

Collaborative tagging has emerged as a mechanism to describe items in large on-line collections. Tags are assigned by users to describe and find back items, but it is also tempting to describe the users in terms of the tags they assign or in terms of the tags of the items they are interested in. The tag-based profile thus obtained can be used to recommend new items.

If we recommend new items by computing their similarity to the user profile or to all items seen by the user, we run into the risk of recommending only neutral items that are a bit relevant for each topic a user is interested in. In order to increase user satisfaction many recommender systems not only optimize for accuracy but also for diversity. Often it is assumed that there exists a trade-off between accuracy and diversity.

In this paper we introduce topic aware recommendation algorithms. Topic aware algorithms first detect different interests in the user profile and then generate recommendations for each of these interests. We study topic aware variants of three tag based recommendation algorithms and show that each of them gives better recommendations than their base variants, both in terms of precision and recall and in terms of diversity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tso-Sutter, K.H.L., Balby Marinho, L., Schmidt-Thieme, L.: Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: Wainwright, R.L., Haddad, H. (eds.) SAC, pp. 1995–1999. ACM, New York (2008)Google Scholar
  2. 2.
    Liang, H., Xu, Y., Li, Y., Nayak, R.: Tag based collaborative filtering for recommender systems. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 666–673. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Said, A., Wetzker, R., Umbrath, W., Hennig, L.: A hybrid plsa approach for warmer cold start in folksonomy recommendation. In: Proceedings of the RecSys 2009 Workshop on Recommender Systems & The Social Web (2009)Google Scholar
  4. 4.
    Bogers, T., van den Bosch, A.: Collaborative and Content-based Filtering for Item Recommendation on Social Bookmarking Websites. In: Proceedings of the ACM RecSys 2009 Workshop on Recommender Systems & the Social Web, New-York, NY, USA, pp. 9–16 (2009)Google Scholar
  5. 5.
    Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Almeida, V.A.F., Baeza-Yates, R.A. (eds.) LA-WEB, pp. 32–41. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  6. 6.
    Peng, J., Zeng, D.: Exploring information hidden in tags: A subject-based item recommendation approach. In: Proceedings of Nineteenth Annual Workshop on Information Technologies and Systems (WITS 2009), Phoenix, Arizona, USA (2009)Google Scholar
  7. 7.
    Hung, C., Huang, Y., Hsu, J., Wu, D.: Tag-Based User Profiling for Social Media Recommendation. In: Workshop on Intelligent Techniques for Web Personalization & Recommender Systems at AAAI 2008, Chicago, Illinois (2008)Google Scholar
  8. 8.
    Liang, H., Xu, Y., Li, Y., Nayak, R., Weng, L.T.: Personalized recommender systems integrating social tags and item taxonomy. In: [20], pp. 540–547Google Scholar
  9. 9.
    Ali, K., van Stam, W.: Tivo: making show recommendations using a distributed collaborative filtering architecture. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) KDD, pp. 394–401. ACM, New York (2004)Google Scholar
  10. 10.
    Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Ellis, A., Hagino, T. (eds.) WWW, pp. 22–32. ACM, New York (2005)Google Scholar
  11. 11.
    Zhang, M., Hurley, N.: Novel item recommendation by user profile partitioning. In: [20], pp. 508–515Google Scholar
  12. 12.
    Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.D.: Personalizing navigation in folksonomies using hierarchical tag clustering. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 196–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding. In: Proc. of the Internat. Symposium on Information Theory, p. 31 (2004)Google Scholar
  15. 15.
    Wartena, C., Brussee, R., Wibbels, M.: Using tag co-occurrence for recommendation. In: ISDA, pp. 273–278. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  16. 16.
    Wartena, C., Brussee, R.: Instance-based mapping between thesauri and folksonomies. In: International Semantic Web Conference, pp. 356–370 (2008)Google Scholar
  17. 17.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Communications in Statistics Simulation and Computation 3(1), 1–27 (1974)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
  19. 19.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009 (2009)Google Scholar
  20. 20.
    Main Conference Proceedings of 2009 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2009, Milan, Italy, September 15-18. IEEE, Los Alamitos (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Wartena
    • 1
  • Martin Wibbels
    • 1
  1. 1.NovayEnschedeThe Netherlands

Personalised recommendations