A Large-Scale System Evaluation on Component-Level

  • Jens Kürsten
  • Maximilian Eibl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

This article describes a large-scale empirical evaluation across different types of English text collections. We ran about 140,000 experiments and analyzed the results on system component-level to find out if we can select configurations that perform reliable on specific types of corpora. To our own surprise we observed that a specific set of configuration parameters achieved 95% of the optimal average MAP across all collections. We conclude that this configuration could be used as baseline reference for evaluation of new IR approaches on English text corpora.

Keywords

Ferro Harman Lester 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleverdon, C.W.: Report on the testing and analysis of an investigation into the comparative efficiency of indexing systems. Tech. report, Cranfield, USA (1962)Google Scholar
  2. 2.
    Hanbury, A., Müller, H.: Automated Component–Level Evaluation: Present and Future. In: Agosti, M., Ferro, N., Peters, C., de Rijke, M., Smeaton, A. (eds.) CLEF 2010. LNCS, vol. 6360, pp. 124–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Ogilvie, P., Callan, J.: Experiments using the Lemur toolkit. TREC 10, 103–108 (2001)Google Scholar
  4. 4.
    Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research directions in terrier: a search engine for advanced retrieval on the Web. Novatica/UPGRADE Special Issue on Next Generation Web Search, 49–56 (2007)Google Scholar
  5. 5.
    Billerbeck, B., Cannane, A., Chattaraj, A., Lester, N., Webber, W., Williams, H.E., Yiannis, J., Zobel, J.: RMIT University at TREC 2004 (2004)Google Scholar
  6. 6.
    Ferro, N., Harman, D.: CLEF 2009: Grid@CLEF pilot track overview. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mostefa, D., Penas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 552–565. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    McNamee, P., Nicholas, C., Mayfield, J.: Addressing morphological variation in alphabetic languages. In: ACM SIGIR 2009, pp. 75–82 (2009)Google Scholar
  8. 8.
    Amati, G.: Frequentist and bayesian approach to information retrieval. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Zhou, Y., Croft, W.B.: Ranking robustness: a novel framework to predict query performance. In: ACM CIKM 2006, pp. 567–574 (2006)Google Scholar
  10. 10.
    Hauff, C., Azzopardi, L., Hiemstra, D.: The combination and evaluation of query performance prediction methods. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 301–312. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Lafferty, J., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: ACM SIGIR 2001, pp. 111–119 (2001)Google Scholar
  12. 12.
    Collins-Thompson, K.: Reducing the risk of query expansion via robust constrained optimization. In: ACM CIKM 2009, pp. 837–846 (2009)Google Scholar
  13. 13.
    Kürsten, J., Eibl, M.: Vergleich von IR Systemkonfigurationen auf Komponentenebene. In: Internationales Symposium der Informationswissenschaft 2011 (to appear, 2011)Google Scholar
  14. 14.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval, p. 160. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jens Kürsten
    • 1
  • Maximilian Eibl
    • 1
  1. 1.Chemnitz University of TechnologyGermany

Personalised recommendations