Terms of a Feather: Content-Based News Recommendation and Discovery Using Twitter

  • Owen Phelan
  • Kevin McCarthy
  • Mike Bennett
  • Barry Smyth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

User-generated content has dominated the web’s recent growth and today the so-called real-time web provides us with unprecedented access to the real-time opinions, views, and ratings of millions of users. For example, Twitter’s 200m+ users are generating in the region of 1000+ tweets per second. In this work, we propose that this data can be harnessed as a useful source of recommendation knowledge. We describe a social news service called Buzzer that is capable of adapting to the conversations that are taking place on Twitter to ranking personal RSS subscriptions. This is achieved by a content-based approach of mining trending terms from both the public Twitter timeline and from the timeline of tweets published by a user’s own Twitter friend subscriptions. We also present results of a live-user evaluation which demonstrates how these ranking strategies can add better item filtering and discovery value to conventional recency-based RSS ranking techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Recommender system based on consumer product reviews. In: WI 2006: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA, pp. 719–723. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  2. 2.
    Balabanovic, M., Shoham, Y.: Combining content-based and collaborative recommendation. Communications of the ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  3. 3.
    Brusilovsky, P., Henze, N.: Open corpus adaptive educational hypermedia. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 671–696. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Cantador, I., Bellogín, A., Castells, P.: News@hand: A Semantic Web Approach to Recommending News. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 279–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW 2007, pp. 271–280. ACM, New York (2007)Google Scholar
  6. 6.
    Esparza, S.G., O’Mahony, M.P., Smyth, B.: On the real-time web as a source of recommendation knowledge. In: RecSys 2010, Barcelona, Spain, September 26-30. ACM, New York (2010)Google Scholar
  7. 7.
    Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. SSRN eLibrary (2008)Google Scholar
  8. 8.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Procedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop, pp. 56–65 (2007)Google Scholar
  9. 9.
    Kamba, T., Bharat, K., Albers, M.C.: The krakatoa chronicle - an interactive, personalized, newspaper on the web. In: Proceedings of the Fourth International World Wide Web Conference, pp. 159–170 (1995)Google Scholar
  10. 10.
    Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: WOSP 2008: Proceedings of the First Workshop on Online Social Networks, pp. 19–24. ACM, NY (2008)CrossRefGoogle Scholar
  11. 11.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: WWW 2010, pp. 591–600 (2010)Google Scholar
  12. 12.
    Lerman, K.: Social Networks and Social Information Filtering on Digg. Arxiv preprint cs.HC/0612046 (2006)Google Scholar
  13. 13.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Eighteenth National Conference on Artificial Intelligence, pp. 187–192 (2002)Google Scholar
  14. 14.
    Pazzani, M., Billsus, D.: Content-based recommendation systems. In: The Adaptive Web, pp. 325–341 (2007)Google Scholar
  15. 15.
    Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: RecSys 2009: Proceedings of the Third ACM Conference on Recommender Systems, pp. 385–388. ACM, New York (2009)Google Scholar
  16. 16.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)CrossRefGoogle Scholar
  17. 17.
    Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 671–680. ACM, New York (2009)Google Scholar
  18. 18.
    Wietsma, R.T.A., Ricci, F.: Product reviews in mobile decision aid systems. In: PERMID, Munich, Germany, pp. 15–18 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Owen Phelan
    • 1
  • Kevin McCarthy
    • 1
  • Mike Bennett
    • 1
  • Barry Smyth
    • 1
  1. 1.CLARITY: Centre for Sensor Web Technologies, School of Computer Science & InformaticsUniversity College DublinIreland

Personalised recommendations