Advertisement

Enhancing Deniability against Query-Logs

  • Avi Arampatzis
  • Pavlos Efraimidis
  • George Drosatos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)

Abstract

We propose a method for search privacy on the Internet, focusing on enhancing plausible deniability against search engine query-logs. The method approximates the target search results, without submitting the intended query and avoiding other exposing queries, by employing sets of queries representing more general concepts. We model the problem theoretically, and investigate the practical feasibility and effectiveness of the proposed solution with a set of real queries with privacy issues on a large web collection. The findings may have implications for other IR research areas, such as query expansion and fusion in meta-search.

Keywords

Query Term Mean Average Precision Borda Count Test Query Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbaro, M., Zeller, T.: A Face Is Exposed for AOL Searcher No. 4417749 (2006), http://www.nytimes.com/2006/08/09/technology/09aol.html (accessed June 2010)
  2. 2.
    Boldi, P., Bonchi, F., Castillo, C., Vigna, S.: From ”Dango” to ”Japanese Cakes”: Query reformulation models and patterns. In: WI-IAT, pp. 183–190. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  3. 3.
    Domingo-Ferrer, J., Solanas, A., Castella-Roca, J.: h(k)-private information retrieval from privacy-uncooperative queryable databases. Online Inf. Review 33(4), 720–744 (2009)CrossRefGoogle Scholar
  4. 4.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete Math. 17(1), 134–160 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Howe, D.C., Nissenbaum, H.: TrackMeNot: Resisting surveillance in web search. In: Lessons from the Identity Trail: Anonymity, Privacy, and Identity in a Networked Society, ch. 23, pp. 417–436. Oxford University Press, Oxford (2009)Google Scholar
  6. 6.
    Jones, R., Kumar, R., Pang, B., Tomkins, A.: Vanity fair: privacy in querylog bundles. In: CIKM, pp. 853–862. ACM, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Kumar, R., Novak, J., Pang, B., Tomkins, A.: On anonymizing query logs via token-based hashing. In: WWW, pp. 629–638. ACM, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Murugesan, M., Clifton, C.: Providing privacy through plausibly deniable search. In: SDM, pp. 768–779. SIAM, Philadelphia (2009)Google Scholar
  9. 9.
    Ostrovsky, R., Skeith, W.I.: A survey of single-database PIR: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Pang, H., Ding, X., Xiao, X.: Embellishing text search queries to protect user privacy. In: VLDB (2010)Google Scholar
  11. 11.
    Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: InfoScale. ACM, New York (2006)Google Scholar
  12. 12.
    Saint-Jean, F., Johnson, A., Boneh, D., Feigenbaum, J.: Private web search. In: WPES, pp. 84–90. ACM, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Shen, X., Tan, B., Zhai, C.: Privacy protection in personalized search. SIGIR Forum 41(1), 4–17 (2007)CrossRefGoogle Scholar
  14. 14.
    Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using wikipedia. In: AAAI, pp. 1419–1424. AAAI Press, Menlo Park (2006)Google Scholar
  15. 15.
    Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E., Milios, E.: Semantic similarity methods in wordnet and their application to information retrieval on the web. In: WIDM, p. 16. ACM, New York (2005)Google Scholar
  16. 16.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. of the 32nd Ann. Meeting of the Assoc. for Computational Linguistics, Las Cruces, New Mexico, pp. 133–138 (1994)Google Scholar
  17. 17.
    Yan, P., Jiao, Y., Hurson, A., Potok, T.: Semantic-based information retrieval of biomedical data. In: SAC, p. 1704. ACM, New York (2006)Google Scholar
  18. 18.
    Yekhanin, S.: Private information retrieval. Commun. ACM 53(4), 68–73 (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Avi Arampatzis
    • 1
  • Pavlos Efraimidis
    • 1
  • George Drosatos
    • 1
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations