Advertisement

Ontology-Driven Adaptive and Pervasive Learning Environments – APLEs: An Interdisciplinary Approach

  • Ahmet Soylu
  • Mieke Vandewaetere
  • Kelly Wauters
  • Igor Jacques
  • Patrick De Causmaecker
  • Piet Desmet
  • Geraldine Clarebout
  • Wim Van den Noortgate
Part of the Communications in Computer and Information Science book series (CCIS, volume 126)

Abstract

This paper reports an interdisciplinary research project on adaptive and pervasive learning environments. Its interdisciplinary nature is built on a firm collaboration between three main research domains, namely, instructional science, methodology, and computer science. In this paper, we first present and discuss mutual, as well as distinctive, vision and goals of each domain from a computer science perspective. Thereafter, we argue for an ontology-driven approach employing ontologies at run-time and development-time where formalized ontologies and rules are considered as main medium of adaptivity, user involvement, and automatic application development. Finally, we introduce a prototype domain context ontology for item-based learning environments and demonstrate its run-time and development-time uses.

Keywords

Adaptive Learning Pervasive Learning Learner Control Item-based Learning Environments Ontologies Model Driven Development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krumm, J.: Ubiquitous Computing Fundamentals. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  2. 2.
    Sharples, M., Taylor, J., Vavoula, G.: Towards a Theory of Mobile Learning. In: mLearn 2005 Conf., Cape Town, South Africa (2005)Google Scholar
  3. 3.
    Soylu, A., De Causmaecker, P., Desmet, P.: Context and Adaptivity in Pervasive Computing Environments: Links with Software Engineering and Ontological Engineering. J. Softw. 4, I992–I1013 (2009)Google Scholar
  4. 4.
    Economides, A.A.: Adaptive context-aware pervasive and ubiquitous learning. Intl. J. Technol. Enhanced Learn. 1, 169–192 (2009)CrossRefGoogle Scholar
  5. 5.
    Ogata, H., Yano, Y.: How Ubiquitous Computing can Support Language Learning. In: KEST 2003, pp. 1–6 (2003)Google Scholar
  6. 6.
    Hundebøl, J., Helms, N.H.: Pervasive e-learning – In situ learning in changing contexts. In: DREAM 2006 Conf. on Informal Learning and Digital Media (2006)Google Scholar
  7. 7.
    Shute, V.J., Towle, B.: Adaptive E-Learning. Educ. Psychol. 38, 105–114 (2003)CrossRefGoogle Scholar
  8. 8.
    Shute, V.J., Zapata-Rivera, D.: Adaptive technologies. In: Spector, J.M., Merril, M.D., van Merriënboer, J.J.G., Driscoll, M. (eds.) Handbook of Research on Educational Communications and Technology, 3rd edn., pp. 277–294 (2008)Google Scholar
  9. 9.
    Kadiyala, M., Crynes, B.L.: Where’s the proof? A review of literature on effectiveness of information technology in education. In: 28th Annual Frontiers in Education (1998)Google Scholar
  10. 10.
    Graf, S., Lin, T., Kinshuk: The relationship between learning styles and cognitive characteristics - Getting additional information for improving student modeling. Comput. Hum. Behav. 24, 122–137 (2008)CrossRefGoogle Scholar
  11. 11.
    Paramythis, A., Loidl-Reisinger, S.: Adaptive Learning Environments and e-Learning Standards. Electron. J e-Learn. 2, 181–194 (2003)Google Scholar
  12. 12.
    VanLehn, K.: The behavior of tutoring systems. Intl. J. Artif. Intell. Educ. 16, 227–265 (2006)Google Scholar
  13. 13.
    Tseng, J.C.R., Chu, H.-C., Hwang, G.-J., Tsai, C.-C.: Development of an adaptive learning system with two sources of personalization information. Comput. & Educ. 51, 776–786 (2008)CrossRefGoogle Scholar
  14. 14.
    Aleven, V., McLaren, B., Roll, R., Koedinger, K.: Toward Meta-cognitive Tutoring: A Model of Help Seeking with a Cognitive Tutor. Intl. J. Artif. Intell. Educ. 16, 101–128 (2006)Google Scholar
  15. 15.
    Jeremic, Z., Jovanovic, J., Gasevic, D.: Evaluating an Intelligent Tutoring System for Design Patterns: the DEPTHS Experience. Educ. Technol. & Soc. 12, 111–130 (2009)Google Scholar
  16. 16.
    Corbalan, G., Kester, L., van Merriënboer, J.J.G.: Selecting learning tasks: Effects of adaptation and shared control on efficiency and task involvement. Contemp. Educ. Psychol. 33, 733–756 (2008)CrossRefGoogle Scholar
  17. 17.
    Bell, B.S., Kozlowski, S.W.J.: Adaptive guidance: enhancing self-regulation, knowledge, and performance in technology-based training. Pers. Psychol. 55, 267–306 (2002)CrossRefGoogle Scholar
  18. 18.
    Brusilovsky, P., Vassileva, J.: Course Sequencing Techniques for Large-Scale Web-Based Education. Intl. J. Contin. Eng. Educ. Lifelong Learn. 13, 75–94 (2003)CrossRefGoogle Scholar
  19. 19.
    Van der Linden, W.J., Hambleton, R.K.: Handbook of Modern Item Response Theory. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wainer, H.: Computerized Adaptive Testing: a Primer. Erlbaum, London (2000)Google Scholar
  21. 21.
    Chen, C.M., Lee, H.M., Chen, Y.H.: Personalized e-learning system using item response theory. Comput. & Educ. 44, 237–255 (2005)CrossRefGoogle Scholar
  22. 22.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. Technical Report, Georgia Institute of Technology, College (1999)Google Scholar
  23. 23.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5, 4–7 (2001)CrossRefGoogle Scholar
  24. 24.
    Henricksen, K., Indulska, J.: Developing Context-Aware Pervasive Computing Applications: Models and Approach. J. Pervasive Mob. Comput. 2, 37–64 (2006)CrossRefGoogle Scholar
  25. 25.
    Thomas, S.: Pervasive, persuasive eLearning: modeling the pervasive learning space. In: 1st IEEE International Workshop on Pervasive eLearning (PerEL 2005), pp. 332–336 (2005)Google Scholar
  26. 26.
    Syvanen, A., Beale, R., Sharples, M., Ahonen, M., Lonsdale, P.: Supporting Pervasive Learning Environments: Adaptability and Context Awareness in Mobile Learning. In: Intl. Workshop on Wireless and Mobile Technologies in Education, pp. 251–253 (2005)Google Scholar
  27. 27.
    Patten, B., Arnedillo-Sanchez, I., Tangney, B.: Designing collaborative, constructionist and contextual applications for handheld devices. Comput. & Educ. 46, 294–308 (2006)CrossRefGoogle Scholar
  28. 28.
    Mödritscher, F., Wild, F.: Sharing Good Practice through Mash-Up Personal Learning Environments. In: Spaniol, M., Li, Q., Klamma, R., Lau, R.W.H. (eds.) ICWL 2009. LNCS, vol. 5686, pp. 245–254. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Han, L., Jyri, S., Ma, J., Yu, K.: Research on Context-aware Mobile Computing. In: Advanced Information Networking Applications Workshops, pp. 24–30 (2008)Google Scholar
  30. 30.
    Sharples, M., Corlett, D., Westmancott, O.: The Design and implementation of Mobile Learning Resource. Pers. Ubiquitous Comput. 6, 220–234 (2002)CrossRefGoogle Scholar
  31. 31.
    Dey, A.K., Mankoff, J.: Designing mediation for context-aware applications. ACM Trans. Comput.-Hum. Interact. 12, 53–89 (2005)CrossRefGoogle Scholar
  32. 32.
    Korpipää, P., Hakkila, J., Kela, J., Ronkainen, S., Kansala, I.: Utilizing context ontology in mobile device application personalization. In: 3rd Intl. Conf. on Mobile and Ubiquitous Multimedia, pp. 133–140 (2004)Google Scholar
  33. 33.
    Hagras, H.: Embedding Computational Intelligence in Pervasive Spaces. IEEE Pervasive Comput. 6, 85–89 (2007)CrossRefGoogle Scholar
  34. 34.
    Trifonova, A.: Mobile learning—Review of the literature. Technical Report (2003)Google Scholar
  35. 35.
    Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J., Zukowski, D.: Challenges: an application model for pervasive computing. In: 6th ACM MobiCom Conf. (2000)Google Scholar
  36. 36.
    Perttunen, M., Riekki, J., Lassila, O.: Context Representation and Reasoning in Pervasive Computing: a Review. Intl. J. Multimed. Ubiquitous Eng. 4, 1–28 (2009)Google Scholar
  37. 37.
    Liu, Z., Liu, L., Kang, H., Zhong, S.: Ontology based User Modeling for Adaptive Educational Hypermedia System. In: 4th Int. Conf. on Computer Science and Education, pp. 1203–1207 (2009)Google Scholar
  38. 38.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering (2003)Google Scholar
  39. 39.
    Soylu, A., De Causmaecker, P.: Merging Model Driven and Ontology Driven Development Approaches: Pervasive Computing Perspective. In: ISCIS 2009, pp. 730–735 (2009)Google Scholar
  40. 40.
    Meller, S.J., Clark, A.N., Futagami, T.: Model-Driven Development. IEEE Softw. 20, 14–18 (2003)CrossRefGoogle Scholar
  41. 41.
    Ruiz, F., Hilera, J.R.: Using Ontologies in Software Engineering and Technology. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies in Software Engineering and Software Technology, pp. 49–102. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Guarino, N.: Formal Ontology in Information Systems. In: FOIS 1998, Trento, Italy (1998)Google Scholar
  43. 43.
    Soylu, A., De Causmaecker, P., Wild, F.: Ubiquitous Web for Ubiquitous Computing Environments: The Role of Embedded Semantics. J. Mob. Multimed. 6, 26–48 (2010)Google Scholar
  44. 44.
    Diouf, M., Maabout, S., Musumbu, K.: Merging Model Driven Architecture and Semantic Web for Business Rules Generation. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 118–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  45. 45.
    Hatala, M., Wakkary, R., Kalantari, L.: Rules and ontologies in support of real-time ubiquitous application. J. Web Semant. 3, 5–22 (2005)CrossRefGoogle Scholar
  46. 46.
    Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live together happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic Web. Artif. Intell. 172, 1495–1539 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic mapping of OWL ontologies into Java. In: SEKE 2004, Banff, Canada (2004)Google Scholar
  49. 49.
    Kazakov, Y., Sattler, U.: Zolin. E.: How many legs do I have? Non-simple roles in number restrictions revisited. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 303–317. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  50. 50.
    Astrova, I., Korda, N., Kalja, A.: Storing OWL Ontologies in SQL Relational Databases. International J. Electr. Comput. Syst. Eng. 1, 242–247 (2007)Google Scholar
  51. 51.
    Vysniauskas, E., Nemuraite, L.: Transforming ontology representation from OWL to relational database. Inf. Technol. Control. 35, 335–345 (2006)Google Scholar
  52. 52.
    Knutov, E., De Bra, P., Pechenizkiy, M.: AH 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Rev. Hypermedia and Multimed. 15, 5–38 (2009)CrossRefGoogle Scholar
  53. 53.
    Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: A tool for developing adaptive courseware. In: WWW 1998, pp. 291–300 (1998)Google Scholar
  54. 54.
    Jovanovic, J., Gasevic, D., Knight, K., Richards, G.: Ontologies for Effective Use of Context in e-Learning Settings. Educ. Technol. Soc. 10, 47–59 (2007)Google Scholar
  55. 55.
    Chi, Y.-L.: Ontology-based curriculum content sequencing system with semantic rules. Expert Syst. Appl. 36, 7838–7847 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ahmet Soylu
    • 1
    • 2
  • Mieke Vandewaetere
    • 1
    • 3
  • Kelly Wauters
    • 1
    • 4
  • Igor Jacques
    • 1
    • 2
  • Patrick De Causmaecker
    • 1
    • 2
  • Piet Desmet
    • 1
  • Geraldine Clarebout
    • 1
    • 3
  • Wim Van den Noortgate
    • 1
    • 4
  1. 1.Interdisciplinary Research on Technology Education & CommunicationK.U. LeuvenKortrijkBelgium
  2. 2.Department of Computer Science, CODeS GroupK.U. LeuvenKortrijkBelgium
  3. 3.Centre for Intructional Psychology and TechnologyK.U. LeuvenLeuvenBelgium
  4. 4.Centre for Methodology of Pedagogical ResearchK.U. LeuvenLeuvenBelgium

Personalised recommendations