Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

  • Allison P. Heath
  • George N. Bennett
  • Lydia E. Kavraki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6577)


This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.


Target Compound Metabolic Network Atom Mapping Mapping Node Online Supplementary Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alper, H., Miyaoku, K., Stephanopoulos, G.: Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology 23(5), 612–616 (2005)CrossRefGoogle Scholar
  2. 2.
    Arita, M.: In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Research 13(11), 2455–2466 (2003)CrossRefGoogle Scholar
  3. 3.
    Arita, M.: The metabolic world of Escherichia coli is not small. Proceedings of the National Academy of Sciences of the United States of America 101(6), 1543–1547 (2004)CrossRefGoogle Scholar
  4. 4.
    Blum, T., Kohlbacher, O.: MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24(18), 2108–2109 (2008)CrossRefGoogle Scholar
  5. 5.
    Blum, T., Kohlbacher, O.: Using Atom Mapping Rules for an Improved Detection of Relevant Routes in Weighted Metabolic Networks. Journal of Computational Biology 15(6), 565–576 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyer, F., Viari, A.: Ab initio reconstruction of metabolic pathways. Bioinformatics 19(90002), 26ii–34ii (2003)Google Scholar
  7. 7.
    Byford, M.F., Baldwin, J.E., Shiau, C.Y., Schofield, C.J.: The Mechanism of ACV Synthetase.. Chemical Reviews 97(7), 2631–2650 (1997)CrossRefGoogle Scholar
  8. 8.
    Caspi, R., Altman, T., Dale, J.M., Dreher, K., Fulcher, C.A., Gilham, F., Kaipa, P., Karthikeyan, A.S., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Paley, S., Popescu, L., Pujar, A., Shearer, A.G., Zhang, P., Karp, P.D.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research 38(Database issue), D473–D479 (2010)CrossRefGoogle Scholar
  9. 9.
    Croes, D., Couche, F., Wodak, S.J., van Helden, J.: Inferring meaningful pathways in weighted metabolic networks. Journal of Molecular Biology 356(1), 222–236 (2006)CrossRefGoogle Scholar
  10. 10.
    Demain, A.L., Elander, R.P.: The β-lactam antibiotics: past, present, and future. Antonie van Leeuwenhoek 75(1), 5–19 (1999)CrossRefGoogle Scholar
  11. 11.
    Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J.: An overview of data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4(3), 246–259 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Faust, K., Croes, D., van Helden, J.: Metabolic pathfinding using RPAIR annotation. Journal of Molecular Biology 388(2), 390–414 (2009)CrossRefGoogle Scholar
  13. 13.
    de Figueiredo, L.F., Schuster, S., Kaleta, C., Fell, D.A.: Response to comment on ‘Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 25(24), 3330–3331 (2009)CrossRefGoogle Scholar
  14. 14.
    Gerlee, P., Lizana, L., Sneppen, K.: Pathway identification by network pruning in the metabolic network of Escherichia coli. Bioinformatics 25(24), 3282–3288 (2009)CrossRefGoogle Scholar
  15. 15.
    Gombert, A.K., Nielsen, J.: Mathematical modelling of metabolism. Current Opinion in Biotechnology 11(2), 180–186 (2000)CrossRefGoogle Scholar
  16. 16.
    Heath, A.P., Bennett, G.N., Kavraki, L.E.: Finding Metabolic Pathways Using Atom Tracking. Bioinformatics 26(12), 1548–1555 (2010)CrossRefGoogle Scholar
  17. 17.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Research 36(Database issue), D480–D484 (2008)Google Scholar
  18. 18.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Research 34(Database issue), D354–D357 (2006)CrossRefGoogle Scholar
  19. 19.
    Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Current Opinion in Biotechnology 14(5), 491–496 (2003)CrossRefGoogle Scholar
  20. 20.
    Kotera, M., Hattori, M., Oh, M., Yamamoto, R., Komeno, T., Goto, S., Yabuzaki, J., Kanehisa, M.: RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions. Genome Informatics 15, P062 (2004)Google Scholar
  21. 21.
    McShan, D.C., Rao, S., Shah, I.: PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics 19(13), 1692–1698 (2003)CrossRefGoogle Scholar
  22. 22.
    Michal, G.: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley & Sons, Inc., New York (1999)Google Scholar
  23. 23.
    Mithani, A., Preston, G.M., Hein, J.: Rahnuma: hypergraph-based tool for metabolic pathway prediction and network comparison. Bioinformatics 25(14), 1831–1832 (2009)CrossRefGoogle Scholar
  24. 24.
    Pitkänen, E., Jouhten, P., Rousu, J.: Inferring branching pathways in genome-scale metabolic networks. BMC Systems Biology 3(1), 103 (2009)CrossRefGoogle Scholar
  25. 25.
    Planes, F.J., Beasley, J.E.: A critical examination of stoichiometric and path-finding approaches to metabolic pathways. Briefings in Bioinformatics 9(5), 422–436 (2008)CrossRefGoogle Scholar
  26. 26.
    Rahman, S.A., Advani, P., Schunk, R., Schrader, R., Schomburg, D.: Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics 21(7), 1189–1193 (2005)CrossRefGoogle Scholar
  27. 27.
    Ranganathan, S., Maranas, C.D.: Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions. Biotechnology Journal 5(7), 716–725 (2010)Google Scholar
  28. 28.
    Sandmann, G.: Carotenoid biosynthesis and biotechnological application. Archives of Biochemistry and Biophysics 385(1), 4–12 (2001)CrossRefGoogle Scholar
  29. 29.
    Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent Developments of the Chemistry Development Kit (CDK) - An Open-Source Java Library for Chemo- and Bioinformatics. Current Pharmaceutical Design 12(17), 2111–2120 (2006)CrossRefGoogle Scholar
  30. 30.
    Thykaer, J.: Metabolic engineering of β-lactam production. Metabolic Engineering 5(1), 56–69 (2003)CrossRefGoogle Scholar
  31. 31.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proceedings of the Royal Society B: Biological Sciences 268(1478), 1803–1810 (2001)CrossRefGoogle Scholar
  32. 32.
    Yoon, S.H., Kim, J.E., Lee, S.H., Park, H.M., Choi, M.S., Kim, J.Y., Lee, S.H., Shin, Y.C., Keasling, J.D., Kim, S.W.: Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Applied Microbiology and Biotechnology 74(1), 131–139 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Allison P. Heath
    • 1
  • George N. Bennett
    • 2
  • Lydia E. Kavraki
    • 1
    • 3
    • 4
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA
  2. 2.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA
  3. 3.Department of BioengineeringRice UniversityHoustonUSA
  4. 4.Structural and Computational Biology and Molecular BiophysicsBaylor College of MedicineHoustonUSA

Personalised recommendations