Advertisement

Protein Loop Closure Using Orientational Restraints from NMR Data

  • Chittaranjan Tripathy
  • Jianyang Zeng
  • Pei Zhou
  • Bruce Randall Donald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6577)

Abstract

Protein loops often play important roles in biological functions such as binding, recognition, catalytic activities and allosteric regulation. Modeling loops that are biophysically sensible is crucial to determining the functional specificity of a protein. A variety of algorithms ranging from robotics-inspired inverse kinematics methods to fragmentbased homology modeling techniques have been developed to predict protein loops. However, determining the 3D structures of loops using global orientational restraints on internuclear vectors, such as those obtained from residual dipolar coupling (RDC) data in solution Nuclear Magnetic Resonance (NMR) spectroscopy, has not been well studied. In this paper, we present a novel algorithm that determines the protein loop conformations using a minimal amount of RDC data. Our algorithm exploits the interplay between the sphero-conics derived from RDCs and the protein kinematics, and formulates the loop structure determination problem as a system of low-degree polynomial equations that can be solved exactly and in closed form. The roots of these polynomial equations, which encode the candidate conformations, are searched systematically, using efficient and provable pruning strategies that triage the vast majority of conformations, to enumerate or prune all possible loop conformations consistent with the data. Our algorithm guarantees completeness by ensuring that a possible loop conformation consistent with the data is never missed. This data-driven algorithm provides a way to assess the structural quality from experimental data with minimal modeling assumptions. We applied our algorithm to compute the loops of human ubiquitin, the FF Domain 2 of human transcription elongation factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the third IgG-binding domain of Protein G (GB3) from experimental RDC data. A comparison of our results versus those obtained by using traditional structure determination protocols on the same data shows that our algorithm is able to achieve higher accuracy: a 3- to 6-fold improvement in backbone RMSD. In addition, computational experiments on synthetic RDC data for a set of protein loops of length 4, 8 and 12 used in previous studies show that, whenever sparse RDCs can be measured, our algorithm can compute longer loops with high accuracy. These results demonstrate that our algorithm can be successfully applied to compute loops with high accuracy from a limited amount of NMR data. Our algorithm will be useful to determine high-quality complete protein backbone conformations, which will benefit the nuclear Overhauser effect (NOE) assignment process in high-resolution protein structure determination.

Keywords

Nuclear Magnetic Resonance Data Residual Dipolar Coupling Alignment Tensor Mobile Anchor Stationary Anchor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrec, M., et al.: J. Biomol. NMR 21, 335–347 (2004)CrossRefGoogle Scholar
  2. 2.
    Baker, D., Sali, A.: Science 294, 93–96 (2001)CrossRefGoogle Scholar
  3. 3.
    Berman, H.M., et al.: Nucleic Acids Res. 28(1), 235–242 (2000)CrossRefGoogle Scholar
  4. 4.
    Bouvignies, G., et al.: Angewandte Chemie 118, 8346–8349 (2006)CrossRefGoogle Scholar
  5. 5.
    Bruccoleri, R.E., Karplus, M.: Macromolecules 29, 1847–1862 (1990)Google Scholar
  6. 6.
    Brünger, A.T.: Yale University Press, New Haven (1992)Google Scholar
  7. 7.
    Buchbinder, J.L., Fletterick, R.J.: J. Biol. Chem. 271(37), 22305–22309 (1996)CrossRefGoogle Scholar
  8. 8.
    Canutescu, A.A., Dunbrack Jr., R.L.: Protein Sci. 12(5), 963–972 (2003)CrossRefGoogle Scholar
  9. 9.
    Casey, J.: Proceedings of the Royal Society of London XIX, 495–497 (1871)Google Scholar
  10. 10.
    Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106(10), 3764–3769 (2009)CrossRefGoogle Scholar
  11. 11.
    Chirikjian, G.S.: In: Proceedings of IROS, vol. 2, pp. 1067–1073 (1993)Google Scholar
  12. 12.
    Clore, G.M., et al.: J. Magn. Reson. 131, 159–162 (1998)CrossRefGoogle Scholar
  13. 13.
    Collura, V., et al.: Protein Sci. 2, 1502–1510 (1993)CrossRefGoogle Scholar
  14. 14.
    Cornilescu, G., et al.: J. Biomol. NMR 13, 289–302 (1999)CrossRefGoogle Scholar
  15. 15.
    Cornilescu, G., et al.: J. Am. Chem. Soc. 120, 6836–6837 (1998)CrossRefGoogle Scholar
  16. 16.
    Cortés, J., et al.: J. Comput. Chem. 25(7), 956–967 (2004)CrossRefGoogle Scholar
  17. 17.
    Coutsias, E.A., et al.: J. Comput. Chem. 25, 510–528 (2004)CrossRefGoogle Scholar
  18. 18.
    Delaglio, F., et al.: J. Am. Chem. Soc. 122, 2142–2143 (2000)CrossRefGoogle Scholar
  19. 19.
    Donald, B.R., Martin, J.: Prog. NMR Spectrosc. 55(2), 101–127 (2009)CrossRefGoogle Scholar
  20. 20.
    Du, P., et al.: Protein Engineering 16(6), 407–414 (2003)CrossRefGoogle Scholar
  21. 21.
    Fine, R.M., et al.: Proteins 1(4), 342–362 (1986)CrossRefGoogle Scholar
  22. 22.
    Fiser, A., et al.: Protein Sci. 9(9), 1753–1773 (2000)CrossRefGoogle Scholar
  23. 23.
    Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)CrossRefGoogle Scholar
  24. 24.
    Georgiev, I., et al.: J. Comput. Chem. 29, 1527–1542 (2008)CrossRefGoogle Scholar
  25. 25.
    Giesen, A.W., et al.: J. Biomol. NMR 25, 63–71 (2003)CrossRefGoogle Scholar
  26. 26.
    Gō, N., Scheraga, H.A.: Macromolecules 3, 178–187 (1970)CrossRefGoogle Scholar
  27. 27.
    Gorczynski, M.J., et al.: Chemistry & Biology 14(10), 1186–1197 (2007)CrossRefGoogle Scholar
  28. 28.
    Güntert, P.: Prog NMR Spectrosc. 43, 105–125 (2003)CrossRefGoogle Scholar
  29. 29.
    Hu, X., et al.: Proc. Natl. Acad. Sci. USA 104(45), 17668–17673 (2007)CrossRefGoogle Scholar
  30. 30.
    Koehl, P., Delarue, M.: Nat. Struct. Biol. 2, 163–170 (1995)CrossRefGoogle Scholar
  31. 31.
    Kolodny, R., et al.: Int. J. Robot Res. 24, 151–163 (2005)CrossRefGoogle Scholar
  32. 32.
    Kuszewski, J., et al.: J. Am. Chem. Soc. 126(20), 6258–6273 (2004)CrossRefGoogle Scholar
  33. 33.
    Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 209–217 (2003)Google Scholar
  34. 34.
    Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 278–289 (2004)Google Scholar
  35. 35.
    Lilien, R.H., et al.: J. Comput. Biol. 12(6), 740–761 (2005)CrossRefGoogle Scholar
  36. 36.
    Liu, P., et al.: PLoS Comput. Biol. 5(8), e1000478 (2009)CrossRefGoogle Scholar
  37. 37.
    Losonczi, J.A., et al.: J. Magn. Reson. 138, 334–342 (1999)CrossRefGoogle Scholar
  38. 38.
    Lovell, S.C., et al.: Proteins 50, 437–450 (2003)CrossRefGoogle Scholar
  39. 39.
    Manocha, D., Canny, J.F.: IEEE T. Robotic Autom. 10, 648–657 (1994)CrossRefGoogle Scholar
  40. 40.
    Milgram, R.J., et al.: J. Comput. Chem. 29(1), 50–68 (2008)CrossRefGoogle Scholar
  41. 41.
    Mumenthaler, C., et al.: J. Biomol. NMR 10(4), 351–362 (1997)CrossRefGoogle Scholar
  42. 42.
    Pesce, S., Benezara, R.: Mol. Cell. Biol. 13(12), 7874–7880 (1993)CrossRefGoogle Scholar
  43. 43.
    Prestegard, J.H., et al.: Chemical Reviews 104, 3519–3540 (2004)CrossRefGoogle Scholar
  44. 44.
    Ramirez, B.E., Bax, A.: J. Am. Chem. Soc. 120, 9106–9107 (1998)CrossRefGoogle Scholar
  45. 45.
    Ramirez, B.E., et al.: Protein Sci. 9, 2161–2169 (2000)CrossRefGoogle Scholar
  46. 46.
    Rohl, C.A., Baker, D.: J. Am. Chem. Soc. 124, 2723–2729 (2002)CrossRefGoogle Scholar
  47. 47.
    Salmon, G.: Longmans, Green and Company, London (1912)Google Scholar
  48. 48.
    Salmon, L., et al.: Angew Chem. Int. Edit. 48(23), 4154–4157 (2009)CrossRefGoogle Scholar
  49. 49.
    Saupe, A.: Angewandte Chemie 7(2), 97–112 (1968)CrossRefGoogle Scholar
  50. 50.
    Saxe, J.B.: In: Proc. 17th Allerton Conf. Comm., Ctrl. Comput., pp. 480–489 (1979)Google Scholar
  51. 51.
    Schwieters, C.D., et al.: J. Magn. Reson. 160, 65–73 (2003)CrossRefGoogle Scholar
  52. 52.
    Shehu, A., et al.: Proteins 65(1), 164–179 (2006)CrossRefGoogle Scholar
  53. 53.
    Shen, Y., et al.: J. Biomol. NMR 44, 213–223 (2009)CrossRefGoogle Scholar
  54. 54.
    Shenkin, P.S., et al.: Biopolymers 26(12), 2053–2085 (1987)CrossRefGoogle Scholar
  55. 55.
    Shi, L., Javitch, J.A.: Proc. Natl. Acad. Sci. USA 101(2), 440–445 (2004)CrossRefGoogle Scholar
  56. 56.
    Tian, F., et al.: J. Am. Chem. Soc. 123, 11791–11796 (2001)CrossRefGoogle Scholar
  57. 57.
    Tjandra, N., Bax, A.: Science 278, 1111–1114 (1997)CrossRefGoogle Scholar
  58. 58.
    Tolman, J.R., et al.: Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995)CrossRefGoogle Scholar
  59. 59.
    Tolman, J.R., et al.: Nat. Struct. Biol. 4(4), 292–297 (1997)CrossRefGoogle Scholar
  60. 60.
    Tosatto, S.C.E., et al.: Protein Engineering 15(4), 279–286 (2002)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Tripathy, C., Zeng, J., Zhou, P., Donald, B.R.: Supporting Information (2011), http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/pool/
  62. 62.
    Ulmer, T.S., et al.: J. Am. Chem. Soc. 125, 9179–9191 (2003)CrossRefGoogle Scholar
  63. 63.
    Ulrich, E.L., et al.: Nucleic Acids Res. 36(Database issue), D402–D408 (2008)Google Scholar
  64. 64.
    van Vlijmen, H.W.T., Karplus, M.: J. Mol. Biol. 267, 975–1001 (1997)CrossRefGoogle Scholar
  65. 65.
    Wang, C., et al.: J. Mol. Biol. 373(2), 503–519 (2007)CrossRefGoogle Scholar
  66. 66.
    Wang, L., Donald, B.R.: J. Biomol. NMR 29(3), 223–242 (2004)CrossRefGoogle Scholar
  67. 67.
    Wang, L., Donald, B.R.: In: Proceedings of CSB, pp. 189–202 (2005)Google Scholar
  68. 68.
    Wang, L., et al.: J. Comput. Biol. 13(7), 1276–1288 (2006)CrossRefGoogle Scholar
  69. 69.
    Wedemeyer, W.J., Scheraga, H.A.: J. Comput. Chem. 20(8), 819–844 (1999)CrossRefGoogle Scholar
  70. 70.
    Word, J.M., et al.: J. Mol. Biol. 285, 1711–1733 (1999)CrossRefGoogle Scholar
  71. 71.
    Yershova, A., et al.: In: Proceedings of WAFR, vol. 68, pp. 355–372 (2010)Google Scholar
  72. 72.
    Zeng, J., et al.: J. Biomol. NMR 45(3), 265–281 (2009)CrossRefGoogle Scholar
  73. 73.
    Zeng, J., et al.: In: Proceedings of CSB, pp. 169–181 (2008) ISBN 1752–7791 Google Scholar
  74. 74.
    Zeng, J., et al.: A markov random field framework for protein side-chain resonance assignment. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 550–570. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  75. 75.
    Zweckstetter, M.: Nat. Protoc. 3, 679–690 (2008)CrossRefGoogle Scholar
  76. 76.
    Zweckstetter, M., Bax, A.: J. Am. Chem. Soc. 122(15), 3791–3792 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chittaranjan Tripathy
    • 1
  • Jianyang Zeng
    • 1
  • Pei Zhou
    • 2
  • Bruce Randall Donald
    • 1
    • 2
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of BiochemistryDuke University Medical CenterDurhamUSA

Personalised recommendations