Causal Reasoning on Biological Networks: Interpreting Transcriptional Changes

(Extended Abstract)
  • Leonid Chindelevitch
  • Daniel Ziemek
  • Ahmed Enayetallah
  • Ranjit Randhawa
  • Ben Sidders
  • Christoph Brockel
  • Enoch Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6577)

Abstract

Over the past decade gene expression data sets have been generated at an increasing pace. In addition to ever increasing data generation, the biomedical literature is growing exponentially. The PubMed database (Sayers et al., 2010) comprises more than 20 million citations as of October 2010. The goal of our method is the prediction of putative upstream regulators of observed expression changes based on a set of over 400,000 causal relationships. The resulting putative regulators constitute directly testable hypotheses for follow-up.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aragno:2008p3436]
    Aragno, M., Mastrocola, R., Alloatti, G., Vercellinatto, I., Bardini, P., Geuna, S., Catalano, M.G., Danni, O., Boccuzzi, G.: Oxidative stress triggers cardiac brosis in the heart of diabetic rats. Endocrinology 149(1), 380–388 (2008)CrossRefGoogle Scholar
  2. [Bild et al., 2006]
    Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Joshi, M.-B., Harpole, D., Lancaster, J.M., Berchuck, A., Olson, J.A., Marks, J.R., Dressman, H.K., West, M., Nevins, J.R.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074), 353–357 (2006)CrossRefGoogle Scholar
  3. [Draghici et al., 2003]
    Draghici, S., Khatri, P., Martins, R.P., Ostermeier, G.C., Krawetz, S.A.: Global functional profiling of gene expression. Genomics 81(2), 98–104 (2003)CrossRefGoogle Scholar
  4. Galindo:2009p3431.
    Galindo, C.L., Skinner, M.A., Errami, M., Olson, L.D., Watson, D.A., Li, J., McCormick, J.F., McIver, L.J., Kumar, N.M., Pham, T.Q., Garner, H.R.: Transcriptional profile of isoproterenol-induced car- diomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure. BMC Physiol. 9, 23 (2009)CrossRefGoogle Scholar
  5. [Pollard et al., 2005]
    Pollard, J., Butte, A.J., Hoberman, S., Joshi, M., Levy, J., Pappo, J.: A computational model to define the molecular causes of type 2 diabetes mellitus. Diabetes Technol. Ther. 7(2), 323–336 (2005)CrossRefGoogle Scholar
  6. [Sayers et al., 2010]
    Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., Dicuccio, M., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-Bauer, A., Miller, V., Mizrachi, I., Ostell, J., Panchenko, A., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Slotta, D., Souvorov, A., Starchenko, G., Tatusova, T.A., Wagner, L., Wang, Y., Wilbur, W.J., Yaschenko, E., Ye, J.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 38(Database issue), 5–16 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leonid Chindelevitch
    • 1
  • Daniel Ziemek
    • 1
  • Ahmed Enayetallah
    • 2
  • Ranjit Randhawa
    • 1
  • Ben Sidders
    • 3
  • Christoph Brockel
    • 4
  • Enoch Huang
    • 1
  1. 1.Computational Sciences Center of EmphasisPfizer Worldwide Research and DevelopmentCambridgeUSA
  2. 2.Compound Safety PredictionPfizer Worldwide Medicinal ChemistryGrotonUSA
  3. 3.eBiology, Pfizer Worldwide Research and Development, SandwichKentUK
  4. 4.Translational and BioinformaticsPfizer Business TechnologiesCambridgeUSA

Personalised recommendations