Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data

  • Kerstin Scheubert
  • Franziska Hufsky
  • Florian Rasche
  • Sebastian Böcker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6577)


Since metabolites cannot be predicted from the genome sequence, high-throughput de-novo identification of small molecules is highly sought. Mass spectrometry (MS) in combination with a fragmentation technique is commonly used for this task. Unfortunately, automated analysis of such data is in its infancy. Recently, fragmentation trees have been proposed as an analysis tool for such data. Additional fragmentation steps (MS n ) reveal more information about the molecule.

We propose to use MS n data for the computation of fragmentation trees, and present the Colorful Subtree Closure problem to formalize this task: There, we search for a colorful subtree inside a vertex-colored graph, such that the weight of the transitive closure of the subtree is maximal. We give several negative results regarding the tractability and approximability of this and related problems. We then present an exact dynamic programming algorithm, which is parameterized by the number of colors in the graph and is swift in practice. Evaluation of our method on a dataset of 45 reference compounds showed that the quality of constructed fragmentation trees is improved by using MS n instead of MS2 measurements.


metabolomics computational mass spectrometry multiple-stage mass spectrometry hardness results parameterized algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bandeira, N., Olsen, J.V., Mann, J.V., Mann, M., Pevzner, P.A.: Multispectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics 24(13), i416–i423 (2008)CrossRefGoogle Scholar
  3. 3.
    Berman, P., Karpinski, M., Scott, A.D.: Computational complexity of some restricted instances of 3-SAT. Discrete Appl. Math. 155, 649–653 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. of ACM Symposium on Theory of Computing (STOC 2007), pp. 67–74. ACM Press, New York (2007)Google Scholar
  5. 5.
    Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Problem. Algorithmica 48(4), 413–432 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, 149–155 (2008); Proc. of European Conference on Computational Biology (ECCB 2008)CrossRefGoogle Scholar
  7. 7.
    Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertexcolored graph pattern matching. J. Discrete Algorithms (2010) (in press), doi:10.1016/j.jda, 09.002 Google Scholar
  8. 8.
    Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fernie, A.R., Trethewey, R.N., Krotzky, A.J., Willmitzer, L.: Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5(9), 763–769 (2004)CrossRefGoogle Scholar
  10. 10.
    Heinonen, M., Rantanen, A., Mielikäinen, T., Kokkonen, J., Kiuru, J., Ketola, R.A., Rousu, J.: FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom. 22(19), 3043–3052 (2008)CrossRefGoogle Scholar
  11. 11.
    Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008)CrossRefGoogle Scholar
  12. 12.
    McLafferty, F.W., Tureček, F.: Interpretation of Mass Spectra, 4th edn. University Science Books, Mill valley (1993)Google Scholar
  13. 13.
    Nuutila, E.: An efficient transitive closure algorithm for cyclic digraphs. Inform. Process. Lett. 52(4), 207–213 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009)CrossRefGoogle Scholar
  15. 15.
    Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. optimization and characterization of the search algorithm. J. Mass Spectrom. 44(4), 494–502 (2009)CrossRefGoogle Scholar
  16. 16.
    Pelander, A., Tyrkkö, E., Ojanperä, I.: In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-ight mass spectrometry urine drug screening. Rapid Commun. Mass Spectrom. 23(4), 506–514 (2009)CrossRefGoogle Scholar
  17. 17.
    Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böocker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. (December 2010) (in press), doi:10.1021/ac101825kGoogle Scholar
  18. 18.
    Sheldon, M.T., Mistrik, R., Croley, T.R.: Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass Spectrom. 20(3), 370–376 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kerstin Scheubert
    • 1
  • Franziska Hufsky
    • 1
    • 2
  • Florian Rasche
    • 1
  • Sebastian Böcker
    • 1
  1. 1.Lehrstuhl für BioinformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Max Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations