Pedigree Reconstruction Using Identity by Descent

  • Bonnie Kirkpatrick
  • Shuai Cheng Li
  • Richard M. Karp
  • Eran Halperin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6577)

Abstract

Can we find the family trees, or pedigrees, that relate the haplotypes of a group of individuals? Collecting the genealogical information for how individuals are related is a very time-consuming and expensive process. Methods for automating the construction of pedigrees could stream-line this process. While constructing single-generation families is relatively easy given whole genome data, reconstructing multi-generational, possibly inbred, pedigrees is much more challenging.

This paper addresses the important question of reconstructing monogamous, regular pedigrees, where pedigrees are regular when individuals mate only with other individuals at the same generation. This paper introduces two multi-generational pedigree reconstruction methods: one for inbreeding relationships and one for outbreeding relationships. In contrast to previous methods that focused on the independent estimation of relationship distances between every pair of typed individuals, here we present methods that aim at the reconstruction of the entire pedigree. We show that both our methods out-perform the state-of-the-art and that the outbreeding method is capable of reconstructing pedigrees at least six generations back in time with high accuracy.

The two programs are available at http://cop.icsi.berkeley.edu/cop/

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101 (2002)CrossRefGoogle Scholar
  2. 2.
    Berger-Wolf, T.Y., Sheikh, S.I., DasGupta, B., Ashley, M.V., Caballero, I.C., Chaovalitwongse, W., Putrevu, S.L.: Reconstructing sibling relationships in wild populations. Bioinformatics 23(13), i49–i56 (2007)CrossRefGoogle Scholar
  3. 3.
    Bickeboller, H., Thompson, E.A.: Distribution of genome shared ibd by half-sibs: Approximation by the poisson clumping heuristic. Theoretical Population Biology 50(1), 66–90 (1996)CrossRefMATHGoogle Scholar
  4. 4.
    Boehnke, M., Cox, N.J.: Accurate inference of relationships in sib-pair linkage studies. American Journal of Human Genetics 61, 423–429 (1997)CrossRefGoogle Scholar
  5. 5.
    Bourgain, C., Hoffjan, S., Nicolae, R., Newman, D., Steiner, L., Walker, K., Reynolds, R., Ober, C., McPeek, M.S.: Novel case-control test in a founder population identifies p-selectin as an atopy-susceptibility locus. American Journal of Human Genetics 73(3), 612–626 (2003)CrossRefGoogle Scholar
  6. 6.
    Brown, D., Berger-Wolf, T.: Discovering kinship through small subsets. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 111–123. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Browning, S.R., Briley, J.D., Briley, L.P., Chandra, G., Charnecki, J.H., Ehm, M.G., Johansson, K.A., Jones, B.J., Karter, A.J., Yarnall, D.P., Wagner, M.J.: Case-control single-marker and haplotypic association analysis of pedigree data. Genetic Epidemiology 28(2), 110–122 (2005)CrossRefGoogle Scholar
  8. 8.
    Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M.: High-Resolution Mapping of Crossovers Reveals Extensive Variation in Fine-Scale Recombination Patterns Among Humans. Science 319(5868), 1395–1398 (2008)CrossRefGoogle Scholar
  9. 9.
    Doan, D., Evans, P.: Fixed-parameter algorithm for haplotype inferences on general pedigrees with small number of sites. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 124–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Donnelly, K.P.: The probability that related individuals share some section of genome identical by descent. Theoretical Population Biology 23(1), 34–63 (1983)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Elston, R.C., Stewart, J.: A general model for the analysis of pedigree data. Human Heredity 21, 523–542 (1971)CrossRefGoogle Scholar
  12. 12.
    Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for general pedigrees. Human Heredity 59, 41–60 (2005)CrossRefGoogle Scholar
  13. 13.
    Gallego Romero, I., Ober, C.: CFTR mutations and reproductive outcomes in a population isolate. Human Genet. 122, 583–588 (2008)CrossRefGoogle Scholar
  14. 14.
    Geiger, D., Meek, C., Wexler, Y.: Speeding up HMM algorithms for genetic linkage analysis via chain reductions of the state space. Bioinformatics 25(12), i196 (2009)CrossRefGoogle Scholar
  15. 15.
    Karp, R.M., Li, S.C.: An efficient method for quasi-cliques partition (2011) (manuscript in preparation)Google Scholar
  16. 16.
    Kirkpatrick, B.: Haplotypes versus genotypes on pedigrees. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 136–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Kirkpatrick, B.: Pedigree reconstruction using identity by descent. Class project, Prof. Yun Song, 2008. Technical Report No. UCB/EECS-2010-43 (2010)Google Scholar
  18. 18.
    Kirkpatrick, B., Reshef, Y., Finucane, H., Jiang, H., Zhu, B., Karp, R.M.: Algorithms for comparing pedigree graphs. CoRR, abs/1009.0909 (2010)Google Scholar
  19. 19.
    Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Science 84(5), 2363–2367 (1987)CrossRefGoogle Scholar
  20. 20.
    Lauritzen, S.L., Sheehan, N.A.: Graphical models for genetic analysis. Statistical Science 18(4), 489–514 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. In: Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology, pp. 101–110 (2003)Google Scholar
  22. 22.
    Li, X., Yin, X.-L., Li, J.: Efficient identification of identical-by-descent status in pedigrees with many untyped individuals. Bioinformatics 26(12), i191–i198 (2010)CrossRefGoogle Scholar
  23. 23.
    McPeek, M.S., Speed, T.P.: Modeling interference in genetic recombination. Genetics 139(2), 1031–1044 (1995)Google Scholar
  24. 24.
    McPeek, M.S., Sun, L.: Statistical tests for detection of misspecified relationships by use of genome-screen data. Amer. J. Human Genetics 66, 1076–1094 (2000)CrossRefGoogle Scholar
  25. 25.
    Ng, M.Y., Levinson, D.F.: et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol. Psychiatry 14, 774–785 (2009)CrossRefGoogle Scholar
  26. 26.
    Ng, S.B., Buckingham, K.J., Lee, C., Bigham, A.W., Tabor, H.K., Dent, K.M., Huff, C.D., Shannon, P.T., Jabs, E.W., Nickerson, D.A., Shendure, J., Bamshad, M.J.: Exome sequencing identifies the cause of a mendelian disorder. Nature Genetics 42(1), 30–35 (2010)CrossRefGoogle Scholar
  27. 27.
    Pemberton, T.J., Wang, C., Li, J.Z., Rosenberg, N.A.: Inference of unexpected genetic relatedness among individuals in hapmap phase iii. Am. J. Hum. Genet. 87(4), 457–464 (2010)CrossRefGoogle Scholar
  28. 28.
    Piccolboni, A., Gusfield, D.: On the complexity of fundamental computational problems in pedigree analysis. Journal of Computational Biology 10(5), 763–773 (2003)CrossRefGoogle Scholar
  29. 29.
    Sheikh, S.I., Berger-wolf, T.Y., Khokhar, A.A., Caballero, I.C., Ashley, M.V., Chaovalitwongse, W., Chou, C., Dasgupta, B.: Combinatorial reconstruction of half-sibling groups from microsatellite data. In: 8th International Conference on Computational Systems Bioinformatics (CSB) (2009)Google Scholar
  30. 30.
    Sobel, E., Lange, K.: Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker-sharing statistics. American Journal of Human Genetics 58(6), 1323–1337 (1996)Google Scholar
  31. 31.
    Stankovich, J., Bahlo, M., Rubio, J.P., Wilkinson, C.R., Thomson, R., Banks, A., Ring, M., Foote, S.J., Speed, T.P.: Identifying nineteenth century genealogical links from genotypes. Human Genetics 117(2-3), 188–199 (2005)CrossRefGoogle Scholar
  32. 32.
    Sun, L., Wilder, K., McPeek, M.S.: Enhanced pedigree error detection. Hum. Hered. 54(2), 99–110 (2002)CrossRefGoogle Scholar
  33. 33.
    Thatte, B.D.: Combinatorics of pedigrees (2006)Google Scholar
  34. 34.
    Thatte, B.D., Steel, M.: Reconstructing pedigrees: A stochastic perspective. Journal of Theoretical Biology 251(3), 440–449 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Thompson, E.A.: Pedigree Analysis in Human Genetics. Johns Hopkins University Press, Baltimore (1985)Google Scholar
  36. 36.
    Thornton, T., McPeek, M.S.: Case-control association testing with related individuals: A more powerful quasi-likelihood score test. American Journal of Human Genetics 81, 321–337 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bonnie Kirkpatrick
    • 1
  • Shuai Cheng Li
    • 2
  • Richard M. Karp
    • 1
  • Eran Halperin
    • 3
    • 2
  1. 1.Electrical Engineering and Computer SciencesUniversity of California, Berkeley and International Computer Science InstituteBerkeleyUSA
  2. 2.International Computer Science InstituteBerkeleyUSA
  3. 3.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations