Advertisement

Natural and Synthetic Layered Pb(II) Oxyhalides

  • Oleg I. Siidra
  • Sergey V. Krivovichev
  • Rick W. Turner
  • Mike S. Rumsey
Chapter

Abstract

Lead oxyhalides occur under variety of natural and technological conditions. They can be found as secondary minerals in oxidation zones of mineral deposits. For instance, Merehead quarry in England is the famous place for many findings of lead oxyhalides first described in 1923 by Spencer and Mountain (1923). Genesis of these deposits is still a topic of discussions. The most recent version points out that galena deposits were emplaced into limestones during the Triassic period (Turner 2006). Afterwards, they were locally exposed to the action of seawater. Oxidation of galena initiated deposition of manganate minerals from the seawater as well as adsorption of heavy metals from both seawater and local environment.

Keywords

Lone Electron Pair Topological Function Tetrahedral Layer Triassic Period Lead Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by Russian President grant (MК-1645.2009.5), Deutsche Forschungsgemeinschaft (DE 412/45-1) and Russian Federal Programme “Scientific Cadres for Innovative Russia” (state contract # 02.740.11.0326).

References

  1. Aurivillius B (1982) On the crystal structure of a number of non-stoichiometric mixed lead oxide halides composed of PbO like blocks and single halogen layers. Chem Scr 19:97–107Google Scholar
  2. Boher P, Garnier P, Gavarri JR (1985) Monoxyde quadratique PbO alpha (I): description de la transition structurale ferroelastique. J Solid State Chem 57:343–350. doi: 10.1016/0022-4596(85)90197-5 CrossRefGoogle Scholar
  3. Edwards R, Gillard RD, Williams PA, Pollard AM (1992) Studies of secondary mineral formation in the PbO-H2O-HCl system. Miner Mag 56:53–65CrossRefGoogle Scholar
  4. Gabuda SP, Kozlova SG, Terskikh VV, Dybowski C, Neue G, Perry DL (1999) 207Pb NMR study of novel Pb-Pb chemical bonding in lead monoxides, α-PbO and β-PbO. Chem Phys Lett 305:353–358. doi: 10.1016/S0009-2614(99)00407-8 CrossRefGoogle Scholar
  5. Krivovichev SV (2004) Crystal structures and cellular automata. Acta Crystallogr A60:257–262. doi: 10.1107/S0108767304007585 Google Scholar
  6. Krivovichev SV (2008) Minerals with antiperovskite structure: a review. Z Kristallogr 223:109–113. doi: 10.1524/zkri.2008.0008 CrossRefGoogle Scholar
  7. Krivovichev SV, Burns PC (2006) The crystal structure of Pb8O5(OH)2Cl4, a synthetic analogue of blixite? Can Miner 44:515–522. doi: 10.2113/gscanmin.44.2.515 CrossRefGoogle Scholar
  8. Krivovichev SV, Filatov SK (1999) Metal arrays in structural units based on anion-centered metal tetrahedra. Amer Miner 84:1099–1106Google Scholar
  9. Krivovichev SV, Armbruster T, Depmeier W (2004) Crystal structures of Pb8O5(AsO4)2 and Pb5O4(CrO4), and review of PbO-related structural units in inorganic compounds. J Solid State Chem 77:1321–1332. doi: 10.1016/j.jssc.2003.11.005 CrossRefGoogle Scholar
  10. Krivovichev SV, Siidra OI, Nazarchuk EV, Burns PC, Depmeier W (2006) Exceptional topological complexity of lead oxide blocks in Pb31O22X18 (X = Br, Cl). Inorg Chem 45:3846–3848. doi: 10.1021/ic060166m CrossRefGoogle Scholar
  11. Krivovichev SV, Turner R, Rumsey M, Siidra OI, Kirk CA (2009) The crystal structure and chemistry of mereheadite. Miner Mag 73:75–89. doi: 10.1180/minmag.2009.073.1.103 CrossRefGoogle Scholar
  12. Lepore GO, Welch MD (2010) The crystal structure of parkinsonite, nominally Pb7MoO9Cl2: a naturally occurring Aurivillius phase. Miner Mag 74:269–275. doi: 10.1180/minmag. 2010.074.2.269 CrossRefGoogle Scholar
  13. Liao J-H, Kanatzidis MG (1993) Quaternary rubidium copper tin sulfides (Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4- units. Chem Mater 5:1561–1569. doi: 10.1021/cm00034a029 CrossRefGoogle Scholar
  14. Post J, Buseck PR (1985) Quantitative energy dispersive analysis of lead halide particles from the Phoenix urban aerosol. Environ Sci Technol 19:682–685. doi: 10.1021/es00138a004 CrossRefGoogle Scholar
  15. Pyykkö P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594. doi: 10.1021/cr00085a006 CrossRefGoogle Scholar
  16. Sigman MB Jr, Korgel BA (2005) Strongly birefringent Pb3O2Cl2 nanobelts. J Am Chem Soc 127:10089–10095. doi: 10.1021/ja051956i CrossRefGoogle Scholar
  17. Siidra OI, Krivovichev SV, Depmeier W (2006) Method of square lattices for the description of structural topologies of minerals and inorganic compounds derivatives of tetragonal PbO (litharge). Vestn S-Peterb U Geol 3:18–26Google Scholar
  18. Siidra OI, Krivovichev SV, Depmeier W (2007) Structure and mechanism of the ionic conductivity of the nonstoichiometric compound Pb2+xOCl2+2x. Dokl Phys Chem 414:128–131. doi: 10.1134/S0012501607060024 CrossRefGoogle Scholar
  19. Siidra OI, Krivovichev SV, Filatov SK (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Z Kristallogr 223:114–126. doi: 10.1524/zkri.2008.0009 CrossRefGoogle Scholar
  20. Siidra OI, Krivovichev SV, Depmeier W (2009) Crystal structure of Pb6O[(Si6Al2)O20]. Glass Phys Chem 35:406–410. doi: 10.1134/S1087659609040099 CrossRefGoogle Scholar
  21. Smith WH (1976) Lead contamination of the roadside ecosystem. J Air Pollut Control Assoc 26:753–766CrossRefGoogle Scholar
  22. Spencer LJ, Mountain ED (1923) New lead-copper minerals from the Mendip Hills, Somerset, England. Miner Mag 20:67–92CrossRefGoogle Scholar
  23. Steele IM, Pluth JJ, Jr Richardson JW (1997) Crystal structure of tribasic lead sulfate (3PbO·PbSO4·H2O) by X-rays and neutrons: an intermediate phase in the production of lead acid batteries. J Solid State Chem 132:173–181. doi: 10.1006/jssc.1997.7440 CrossRefGoogle Scholar
  24. Turner R (2006) A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Miner Mag 70:629–653. doi: 10.1180/0026461067060359 CrossRefGoogle Scholar
  25. Welch MD (2004) Pb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2. Miner Mag 68:247–254. doi: 10.1180/0026461046820185 CrossRefGoogle Scholar
  26. Welch MD, Criddle AJ, Symes RF (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Miner Mag 62:387–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oleg I. Siidra
    • 1
  • Sergey V. Krivovichev
    • 1
  • Rick W. Turner
    • 2
  • Mike S. Rumsey
    • 3
  1. 1.Department of Crystallography, Geological FacultySaint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.The DreySalisburyUK
  3. 3.Department of MineralogyNatural History MuseumLondonUK

Personalised recommendations