Delhayelite and Mountainite Mineral Families: Crystal Chemical Relationship, Microporous Character and Genetic Features

  • Igor V. Pekov
  • Natalia V. Zubkova
  • Nikita V. Chukanov
  • Anna G. Turchkova
  • Yaroslav E. Filinchuk
  • Dmitry Yu. Pushcharovsky
Chapter

Abstract

Many minerals show the properties commonly named “zeolitic”: ion exchange and leaching, sorption of gases and organic molecules, reversible hydration, etc. The most well-known examples are aluminosilicate zeolites, clay minerals and pyrochlores. Besides them, several other large groups of minerals are now in focus of research as potential microporous materials or their prototypes. First, there are Ti-, Zr-, Nb-silicates with heteropolyhedral frameworks. This paper is devoted to other minerals of this interest. There are two related families of natural silicates with structures based on Si,O or Al,Si,O tetrahedral layers and columns of edge-shared Ca-centered octahedra.

References

  1. Cadoni M, Ferraris G (2009) Two new members of the rhodesite mero-plesiotype series close to delhayelite and hydrodelhayelite: synthesis and crystal structure. Eur J Miner 21:485–493CrossRefGoogle Scholar
  2. Cannillo E, Rossi G, Ungaretti L (1969) The crystal structure of delhayelite. Rend Soc Ital Miner Pet 26:63–75Google Scholar
  3. Ferraris G, Gula A (2005) Polysomatic aspects of microporous minerals – heterophyllosilicates, palysepioles and rhodesite-related structures. Rev Miner Geochem 57:69–104CrossRefGoogle Scholar
  4. Gard JA, Taylor HFW, Chalmers RA (1957) An investigation of two new minerals: rhodesite and mountainite. Miner Mag 31:611–623CrossRefGoogle Scholar
  5. Hesse KF, Liebau F, Merlino S (1992) Crystal structure of rhodesite, HK1-xNax+2yCa2-y{1B,3,22}[Si8O19]•(6−z)H2O, from three localities and its relation to other silicates with dreier double layers. Z Kristallogr 199:25–48CrossRefGoogle Scholar
  6. Pekov IV, Zubkova NV, Chukanov NV, Sharygin VV, Pushcharovsky DYu (2009) Crystal chemistry of delhayelite and hydrodelhayelite. Dokl Earth Sci 428(7):1216–1221CrossRefGoogle Scholar
  7. Pekov IV, Zubkova NV, Chukanov NV, Zadov AE, Pushcharovsky DYu (2010a) Fivegite, K4Ca2[AlSi7O17(O2-xOHx)][(H2O)2-xOHx]Cl, a new mineral from the Khibiny alkaline complex, Kola Peninsula, Russia. Zap RMO 139(4):47–63 (in Russian)Google Scholar
  8. Pekov IV, Zubkova NV, Filinchuk YaE, Chukanov NV, Zadov AE, Pushcharovsky DYu, Gobechiya ER (2010b) Shlykovite, KCa[Si4O9(OH)]⋅3H2O, and cryptophyllite, K2Ca[Si4O10]⋅5H2O, two new mineral species from the Khibiny alkaline complex, Kola Peninsula, Russia. Zap RMO 139(1):37–50 (in Russian)Google Scholar
  9. Ragimov KG, Chiragov MI, Mamedov KS, Dorfman MD (1980) Crystal structure of hydrodelhayelite, KH2Ca2(Si,Al)8O19·6H2O. Doklady AN Azerb SSR 36(12):49–51 (in Russian)Google Scholar
  10. Turchkova AG, Pekov IV, Lykova IS, Chukanov NV, Yapaskurt VO (2011) Delhayelite: ion leaching and ion exchange. In: Krivovichev SV (ed) Minerals as advanced materials II, 221–228Google Scholar
  11. Zubkova NV, Pekov IV, Pushcharovsky DYu, Chukanov NV (2009) The crystal structure and refined formula of mountainite, KNa2Ca2Si8O19(OH)⋅6H2O. Z Kristallogr 224:389–396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Igor V. Pekov
    • 1
  • Natalia V. Zubkova
    • 1
  • Nikita V. Chukanov
    • 2
  • Anna G. Turchkova
    • 1
  • Yaroslav E. Filinchuk
    • 3
  • Dmitry Yu. Pushcharovsky
    • 1
  1. 1.Faculty of GeologyMoscow State UniversityMoscowRussia
  2. 2.Institute of Problems of Chemical Physics RASChernogolovkaRussia
  3. 3.Swiss-Norwegian Beam Lines at ESRFGrenobleFrance

Personalised recommendations