9 Genomic and Comparative Analysis of the Class Dothideomycetes

  • James K. Hane
  • Angela H. Williams
  • Richard P. Oliver
Chapter
Part of the The Mycota book series (MYCOTA, volume 14)

Abstract

The class Dothideomycetes is a recently defined taxon within the phylum Ascomycota, with approximately 20 000 member species. Many species are important phytopathogens employing diverse pathogenicity strategies. This review compares the currently available genome sequences, including their mitochondrial sequences. The genomes of Dothideomycetes exhibit remarkable plasticity, characterised by extensive rearrangement of gene order and orientation. Dothideomycetes also display the ability to take advantage of repeat induced point mutation (RIP), a fungal specific mechanism to protect their genomes against transposon invasion. RIP also affects areas of the genome adjacent to transposon insertion sites conferring the adaptive advantage of rapid generation of diversity in fungal pathogenicity effector genes. In addition, Dothideomycetes have the propensity for lateral gene transfer which can involve the transmission of pathogenicity effectors. The combination of these mechanisms has led to the ascendance of many Dothideomycetes as the dominant fungal pathogens of their cultivated host plant species.

Notes

Acknowledgements

This work was supported by the Grains Research and Development Corporation, Barton, ACT, Australia.

References

  1. Andrew M, Peever TL and Pryor BM (2009) An expanded multilocus phylogeny does not resolve morphological species within the small-spored Altemaria species complex. Mycologia 101:95–109PubMedCrossRefGoogle Scholar
  2. Aptroot A, Lücking R, Sipman H, Umana L and Chaves J-L (2008) Pyrenocarpous lichens with bitunicate asci. A first assessment of the lichen biodiversity inventory in Costa Rica. Bibl Lichenol 97:1–162Google Scholar
  3. Bao Z and Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12(8):1269–1276PubMedCrossRefGoogle Scholar
  4. Bearchell SJ, Fraaije BA, Shaw MW and Fitt BD (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc Natl Acad Sci 102:5438–5442PubMedCrossRefGoogle Scholar
  5. Bhathal JS, Loughman R and Speijers J (2003) Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch. Eur J Plant Pathol 109:435–443CrossRefGoogle Scholar
  6. Boehm EW, Mugambi GK, Miller AN, Huhndorf SM, Marincowitz S, Spatafora JW and Schoch CL (2009) A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Stud Mycol 64:49–83PubMedCrossRefGoogle Scholar
  7. Bringans S, Hane JK, Casey T, Tan KC, Lipscombe R, Solomon PS and Oliver RP (2009) Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics 10:301PubMedCrossRefGoogle Scholar
  8. Brun H, Levivier S, Somda I, Ruer D, Renard M and Chevre AM (2000) A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculansBrassica napus pathosystem. Phytopathology 90(9):961–966PubMedCrossRefGoogle Scholar
  9. Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y and Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103(40):14959–14964PubMedCrossRefGoogle Scholar
  10. Cooley RN and Caten CE (1991) Variation in electrophoretic karyotype between strains of Septoria nodorum. Mol Gen Genet 228(1/2):17–23PubMedGoogle Scholar
  11. Curtis MJ and Wolpert TJ (2004) The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. Plant J 38(2):244–259PubMedCrossRefGoogle Scholar
  12. Dear PH and Cook PR (1993) Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res 21(1):13–20PubMedCrossRefGoogle Scholar
  13. Edgar RC and Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21 [Suppl 1]:i152–il58Google Scholar
  14. Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Segurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Dequard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarre B, Sellem CH, Debuchy R, Wincker P, Weissenbach J and Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9(5):R77PubMedCrossRefGoogle Scholar
  15. Faris JD, Anderson JA, Francl LJ and Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463CrossRefGoogle Scholar
  16. Fitt BDL, Brun H, Barbetti MJ and Rimmer SR (2006) World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15CrossRefGoogle Scholar
  17. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA and Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38(8):953–956PubMedCrossRefGoogle Scholar
  18. Fudal I, Ross S, Brun H, Besnard AL, Ermel M, Kuhn ML, Balesdent MH and Rouxel T (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant Microbe Interact 22(8):932–941PubMedCrossRefGoogle Scholar
  19. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C and Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868PubMedCrossRefGoogle Scholar
  20. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA and Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438(7071):1105–1115Google Scholar
  21. Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MS and Howlett BJ (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53(5):1307–1318PubMedCrossRefGoogle Scholar
  22. Gardiner DM and Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248(2):241–248PubMedCrossRefGoogle Scholar
  23. Gladieux P, Zhang XG, Afoufa-Bastien D, Valdebenito Sanhueza RM, Sbaghi M and Le Cam B (2008) On the origin and spread of the Scab disease of apple: out of central Asia. PLoS One 3(1):e1455PubMedCrossRefGoogle Scholar
  24. Goodwin SB, Ben M'Barek S, Dhillon B, Wittenberg A, Crane CF, Van der Lee TAJ, Grimwood J, Aerts A, Antoniw J, Bailey A, Bluhm B, Bowler J, Bristow J, Brokstein P, Canto-Canche B, Churchill A, Conde-Ferràez L, Cools H, Coutinho PM, Csukai M, Dehal P, Donzelli B, Foster AJ, Hammond-Kosack K, Hane J, Henrissat B, Kilian A, Koopmann E, Kourmpetis Y, Kuo A, Kuzniar A, Lindquist E, Maliepaard C, Martins N, Mehrabi R, Oliver R, Platt D, Ponomarenko A, Rudd J, Salamov A, Schwarz J, Shapiro H, Stergiopoulos I, Torriani S, Tu H, de Vries R, Wiebenga A, Zwiers L-H, Grigoriev IV and Kema GHJ (2011) Finished genome of Mycosphaerella graminicola reveals stealth pathogenesis and dispensome structure. PLoS Genet (in press)Google Scholar
  25. Groenewald M, Groenewald JZ and Crous PW (2005) Distinct species exist within the Cercospora apii morphotype. Phytopathology 95:951–959PubMedCrossRefGoogle Scholar
  26. Hane JK (2011) Bioinformatic genome analysis of the necrotrophic wheat-pathogenic fungus Phaeosphaeria nodorum. PhD thesis, Murdoch University, MurdochGoogle Scholar
  27. Hane JK, Lowe RGT, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SFF, McDonald BA and Oliver RP (2007) Dothideomycete–plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19(11):3347–3368PubMedCrossRefGoogle Scholar
  28. Hane JK and Oliver RP (2008) RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics 9:478PubMedCrossRefGoogle Scholar
  29. Hane JK and Oliver RP (2010) In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics 2010, 11:655Google Scholar
  30. Hane JK, Rouxel T, Howlett BJ, Kema GHJ, Goodwin SB, Oliver RP (2011) A novel mode of chromosomal evolution called Mesosynteny that is peculiar to filamentous Ascomycete fungi. Genome Biology (in press).Google Scholar
  31. Hardwick NV, Jones DR and Slough JE (2001) Factors affecting diseases of winter wheat in England and Wales, 1989–98. Plant Pathol 50:453–462CrossRefGoogle Scholar
  32. Hashim I (1998) Disease survey. IRRDB, Kuala LumpurGoogle Scholar
  33. Hooker AL, Smith DR, Lim SM and Musson MD (1970) Physiological races of Helminthosporium maydis and disease resistance. Plant Dis Rep 54:1109–1110Google Scholar
  34. Howlett BJ, Idnurm A and Pedras MSC (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14PubMedCrossRefGoogle Scholar
  35. Idnurm A and Howlett BJ (2003) Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans. Fungal Genet Biol 39(1):31–37PubMedCrossRefGoogle Scholar
  36. IpCho SV S (2010) Pathogenicity of Stagonospora nodorum. PhD thesis, Murdoch University, MurdochGoogle Scholar
  37. Irelan JT, Hagemann AT and Selker EU (1994) High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora. Genetics 138(4):1093–1103PubMedGoogle Scholar
  38. Kale SD, Gu B, Capelluto DGS, Dou D, Cronin A, Arredondo FD, Feldman E, Fudal I, Rouxel T, Lawrence CB, Shan W and Tyler BM (2010) External phosphatidylinositol-3-phosphate mediates host cell entry by eukaryotic pathogen effectors. Cell 142(2):284–295PubMedCrossRefGoogle Scholar
  39. Khaldi N, Collemare J, Lebrun M-H and Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18PubMedCrossRefGoogle Scholar
  40. Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JA and Hameister H (2004) Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 20(12):598–603PubMedCrossRefGoogle Scholar
  41. Kroken S, Glass NL, Taylor JW, Yoder OC and Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100(26):15670–15675PubMedCrossRefGoogle Scholar
  42. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C and Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12PubMedCrossRefGoogle Scholar
  43. Levings CS, 3rd and Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Mol Biol 19(1):135–147Google Scholar
  44. Li CX and Cowling WA (2003) Identification of a single dominant allele for resistance to blackleg in Brassica napus “Surpass 400”. Plant Breed 122:485–488CrossRefGoogle Scholar
  45. Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB and Friesen TL (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5(9):e1000581PubMedCrossRefGoogle Scholar
  46. Luttrell ES (1955) The ascostromatic Ascomycetes. Mycologia 47:511–532CrossRefGoogle Scholar
  47. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N and Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161PubMedCrossRefGoogle Scholar
  48. Malkus A, Song Q, Cregan P, Arseniuk E and Ueng PP (2009) Genetic linkage map of Phaeosphaeria nodorum, the causal agent of stagonospora nodorum blotch disease of wheat. Eur J Plant Pathol:1–10Google Scholar
  49. Marcet-Houben M and Gabaldon T (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26(1):5–8PubMedCrossRefGoogle Scholar
  50. McLysaght A, Enright AJ, Skrabanek L and Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17(1):22–36PubMedCrossRefGoogle Scholar
  51. Murray GM and Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Aust Plant Pathol 38:558–570CrossRefGoogle Scholar
  52. Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kuck U and Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):e1000891PubMedCrossRefGoogle Scholar
  53. Oliver R (2009) Plant breeding for disease resistance in the age of effectors. Phytoparasitica 37:1–5CrossRefGoogle Scholar
  54. Oliver RP (1992) A model system for the study of plant–fungal interactions: Tomato leaf mold caused by Cladosporium fulvum.In: Verma DPS (ed) Molecular signals in plant–microbe communications. CRC, Boca Raton, pp 97–106Google Scholar
  55. Oliver RP and Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:1–5CrossRefGoogle Scholar
  56. Palmer C-L and Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3(2):63–70PubMedCrossRefGoogle Scholar
  57. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J and Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221–231Google Scholar
  58. Pennacchio LA (2003) Insights from human/mouse genome comparisons. Mamm Genome 14(7):429–436PubMedCrossRefGoogle Scholar
  59. Phan HT, Ellwood SR, Hane JK, Ford R, Materne M and Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114(3):549–558Google Scholar
  60. Ploetz RC (2001) Black sigatoka of banana. The Plant Health Instructor, New YorkGoogle Scholar
  61. Price AL, Jones NC and Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21 [Suppl 1]:i351–i358PubMedCrossRefGoogle Scholar
  62. Quesneville H, Nouaud D and Anxolabehere D (2005) Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol Biol Evol 22(3):741–746PubMedCrossRefGoogle Scholar
  63. Rouxel T, Grandaubert J, Hane J, Hoede C, van de Wouw A, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen A, Ciuffetti L, Dimaghani A, Duret L, Fudal I, Goodwin S, Gout L, Glaser N, Kema G, Lapalu N, Lawrence C, May K, Meyer M, Ollivier B, Poulain J, Turgeon G, Tyler BM, Vincent D, Weissenbach J, Amselem J, Balesdent M-H, Howlett BJ, Oliver R, Quesneville H and Wincker P (2011) The patchwork genome of Leptosphaeria maculans: effector diversification driven by location within RIP-affected isochores. Nat Commun 2:202Google Scholar
  64. Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourne R, Schmit J and Bealesdent MH (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards to Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109:871–881CrossRefGoogle Scholar
  65. Schmitt I and Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4(2):e4437PubMedCrossRefGoogle Scholar
  66. Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lucking R, Lumbsch HT, Marvanova L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y and Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15PubMedCrossRefGoogle Scholar
  67. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW and Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1043–1054CrossRefGoogle Scholar
  68. Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ and Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262(5130):110–114PubMedCrossRefGoogle Scholar
  69. Selker EU, Cambareri EB, Jensen BC and Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51(5):741–752PubMedCrossRefGoogle Scholar
  70. Shultz JL, Ray JD and Lightfoot DA (2007) A sequence based synteny map between soybean and Arabidopsis thaliana. BMC Genomics 8:8PubMedCrossRefGoogle Scholar
  71. Silva WPK, Wijesundera RIC, Karunanayake EH, Jayasinghe CK and Priyanka UMS (2000) New hosts of Corynespora cassiicola in Sri Lanka. Plant Dis 84:202CrossRefGoogle Scholar
  72. Smith DR and White DG (1988) Diseases of corn. In: Sprague GF and Dudley JW (eds) Corn and corn improvement. Agronomy series 18. ASA/CSSA/SSS, Madison, pp 701–766Google Scholar
  73. Solomon PS, Lowe RG T, Tan KC, Waters ODC and Oliver RP (2006) Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Mol Plant Pathol 7:147–156PubMedCrossRefGoogle Scholar
  74. Stukenbrock EH and McDonald BA (2007) Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Mol Plant Pathol 8(3):321–332PubMedCrossRefGoogle Scholar
  75. Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–235PubMedCrossRefGoogle Scholar
  76. Torriani SF, Goodwin SB, Kema GH, Pangilinan JL and McDonald BA (2008) Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genet Biol 45(5):628–637PubMedCrossRefGoogle Scholar
  77. Turgeon BG and Baker SE (2007) Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet 57:219–261PubMedCrossRefGoogle Scholar
  78. Tzeng T-H, Lyngholm L, Ford C and Bronson C (1992) A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130(1):81–96PubMedGoogle Scholar
  79. Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–71. Annu Rev Phytopathol 10:37–50CrossRefGoogle Scholar
  80. Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP and Howlett BJ (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathogens 6(11):e1001180PubMedCrossRefGoogle Scholar
  81. Watters MK, Randall TA, Margolin BS, Selker EU and Stadler DR (1999) Action of repeat-induced point mutation on both strands of a duplex and on tandem duplications of various sizes in Neurospora. Genetics 153(2):705–714PubMedGoogle Scholar
  82. Wei J, Lui K, Chen J, Luo P and Lee-Stadelmann OY (1988) Pathological and physiological identification of race C of Bipolaris maydis in China. Phytopathology 78:550–554CrossRefGoogle Scholar
  83. Wulff BBH, Chakrabarti A and Jones DA (2009) Recognitional Specificity and Evolution in the Tomato–Cladosporium fulvum Pathosystem. Mol Plant Microbe Interact 22(10):1191–1202PubMedCrossRefGoogle Scholar
  84. Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JH, Hirayama K, Tanaka K, Pointing SB, Spatafora JW and Hyde KD (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–1022PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James K. Hane
    • 1
    • 2
  • Angela H. Williams
    • 1
  • Richard P. Oliver
    • 3
  1. 1.Faculty of Health SciencesMurdoch UniversityPerthAustralia
  2. 2.CSIRO Plant Industry, CELS FloreatPerthAustralia
  3. 3.Department of Environment and AgricultureCurtin UniversityPerthAustralia

Personalised recommendations