7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota

Chapter
Part of the The Mycota book series (MYCOTA, volume 14)

Abstract

The most widespread and prominent symbiosis between land plants and fungi is the arbuscular mycorrhiza (AM). This type of mycorrhiza symbiosis is formed between approximately 80% of land plants and a monophyletic group of obligate symbiotic, multikaryotic and asexual fungi, the Glomeromycota. Despite the enormous ecological and economical importance of AM fungi, their biology is poorly understood. The focus here is, after reporting some historical aspects, on the recently advanced understanding of molecular phylogenetic relationships, the evolution and biogeography, and the obligate symbiotic endobacteria of AM fungi. Fossils and molecular clock estimates date the origin of AM symbioses to at least 460 MY ago, and AM fungi and land plants coevolved since then. Possibly, the fungi in the Glomeromycota were already ‘on the symbiotic track’ long before land plants originated. Aspects regarding the asexual evolution and heterokaryotic nature of glomeromycotan fungi and a feasible species concept are discussed.

References

  1. Agerer R, Amirati J, Blanz P, Courtecuisse R, Desjardin DE, Gams W, Hallenberg N, Halling R, Hawksworth DL, Horak E, Korf RP, Mueller GM, Oberwinkler F, Rambold G, Summerbell RC, Triebel D, Watling R (2000) Open letter to the scientific community of mycologists. Can J Bot 78:981–983Google Scholar
  2. Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr Biol 20:1216–1221PubMedCrossRefGoogle Scholar
  3. Benedetto A, Bonfante P (2004) 2004 snapshots of AM fungi: still an endless tale. Mycol Res 108:338–340CrossRefGoogle Scholar
  4. Benjamin RK (1979) Zygomycetes and their spores. In: Kendrick B (ed) The whole fungus, vol 2. National Museum of Natural Sciences and National Museum of Canada, Ottawa, pp 573–622Google Scholar
  5. Benny GL, Humber RA, Morton JB (2001) Zygomycota: Zygomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7A. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 113–146Google Scholar
  6. Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7B. Systematics and evolution. Springer, Berlin Heidelberg New York, pp 229–245Google Scholar
  7. Bidartondo MI, et al. (2008) Preserving Accuracy in Genbank, Science 21:1616CrossRefGoogle Scholar
  8. Börstler B, Thiéry O, Sýkorová Z, Berner A, Redecker D (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol Ecol 19:1497–1511PubMedCrossRefGoogle Scholar
  9. Bucholtz F (1912) Beiträge zur Kenntnis der Gattung Endogone Link. Beih Bot Zbl 29:147–225Google Scholar
  10. Cai CY, Ouyang S, Wang Y, Fang ZJ, Rong JY, Geng LY, Li XX (1996) An Early Silurian vascular plant. Nature 379:592Google Scholar
  11. Castagnone-Sereno P (2006) Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 96:282–289PubMedCrossRefGoogle Scholar
  12. Check-Hayden E (2008) Evolution: Scandal! Sex-starved and still surviving. Nature 452:678–680CrossRefGoogle Scholar
  13. Corradi N, Kuhn G, Sanders IR (2004a) Monophyly of β-tubulin and H+−ATPase gene variants in Glomus intraradices: consequences for molecular evolutionary studies of AM fungal genes. Fungal Genet Biol 41:262–273PubMedCrossRefGoogle Scholar
  14. Corradi N, Hijri M, Fumagalli L, Sanders IR (2004b) Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fungal Genet Biol 41:1037–1045PubMedCrossRefGoogle Scholar
  15. Corradi N, Sanders IR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6:21PubMedCrossRefGoogle Scholar
  16. Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, Kim PV, Nottéghem JL, Kohn LM (2005) Origins of host-specific populations of the blast pathogen, Magnaporthe oryzae, in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630PubMedCrossRefGoogle Scholar
  17. Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Phil Trans R Soc B:287–305Google Scholar
  18. Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687PubMedCrossRefGoogle Scholar
  19. Dangeard PA (1900) Le Rhizophagus populinus. Botaniste 7:285–287Google Scholar
  20. de Souza FA, Leeflang P, Kowalchuk GA, van Veen JA, Smit E (2004) PCR-denaturing gradient gel electrophoresis profiling of the inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl Environ Microbiol 70:1413–1424PubMedCrossRefGoogle Scholar
  21. Dotzler N, Krings M, Hass H, Walker C, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with germination shields from 400-million-year-old Rhynie chert. Mycol Progr 8:9–18CrossRefGoogle Scholar
  22. Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Progr 5:178–184CrossRefGoogle Scholar
  23. Douhan GW, Petersen C, Bledsoe CS, Rizzo DM (2005) Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza 15:365–372PubMedCrossRefGoogle Scholar
  24. Ekelund F, Rønn R (2008) If you don’t need change, maybe you don’t need sex. Nature 453:587.PubMedCrossRefGoogle Scholar
  25. Ferrol N, Barea JM, Azcon-Aguilar C (2000) The plasma membrane H+−ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118PubMedCrossRefGoogle Scholar
  26. Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243CrossRefGoogle Scholar
  27. Fontaneto DE, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG (2007) Independently evolving species in asexual bdelloid rotifers. PLoS Biol 5:e87PubMedCrossRefGoogle Scholar
  28. Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145Google Scholar
  29. Franke M, Morton JB (1994) Ontogenetic comparisons of arbuscular mycorrhizal fungi Scutellospora heterogama and Scutellospora pellucida: revision of taxonomic character concepts, species descriptions, and phylogenetic hypotheses. Can J Bot 72:122–134CrossRefGoogle Scholar
  30. Gallaud I (1905) Etudes sur les mycorrhizes endotrophes. Rev Gen Bot 17:5–48, 66–83, 123–135, 223–239, 313–325, 425–433, 479–500Google Scholar
  31. Gamper H, Walker C, Schüßler A (2009) Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506PubMedCrossRefGoogle Scholar
  32. Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriformis, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomerales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81PubMedCrossRefGoogle Scholar
  33. Gerdemann JW (1968) Vesicular–arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418CrossRefGoogle Scholar
  34. Gerdemann JW, Trappe JM (1974) Endogonaceae in the Pacific Northwest. Mycol Mem 5:1–76Google Scholar
  35. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624PubMedCrossRefGoogle Scholar
  36. Goto BT, Maia LC, Oehl F (2008) Ambispora brasiliensis a new ornamented species in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 105:11–18Google Scholar
  37. Hamilton WD (2001) Narrow roads of gene land, vol 2. Evolution of sex. Oxford University Press, OxfordGoogle Scholar
  38. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefGoogle Scholar
  39. Hedges SB, Kumar S (2003) Genomic clocks and evolutionary timescales. Trends Genet 19:200–206CrossRefGoogle Scholar
  40. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter A (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  41. Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132PubMedCrossRefGoogle Scholar
  42. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  43. Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163PubMedCrossRefGoogle Scholar
  44. Husband R, Herre EA, Young JP (2002) Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiol Ecol 42:131–136PubMedCrossRefGoogle Scholar
  45. Ijdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122PubMedCrossRefGoogle Scholar
  46. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox C, Celio G, Gueidan C, Fraker E, Miądlikowska J, Lumbsch, HT, Rauhut A, Reeb V, Arnold EA, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton J, Sugiyama J, Rossman AY, Rogers, JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin D, Spatafora J, Vilgalys R (2006) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  47. Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681CrossRefGoogle Scholar
  48. Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble J, Follet R, Stewart B (eds) Soil processes and the carbon cycle. CRC, Boca RatonGoogle Scholar
  49. Johnson D, Vandenkoornhuyse PJ, Leake J, Gilbert L, Booth RE, Grime JP, Young JPW, Read D (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515CrossRefGoogle Scholar
  50. Keeling PJ (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309PubMedCrossRefGoogle Scholar
  51. Kjøller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil 226:189–196CrossRefGoogle Scholar
  52. Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440PubMedCrossRefGoogle Scholar
  53. Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23CrossRefGoogle Scholar
  54. Kramadibrata K, Walker C, Schwarzott D, Schüßler A (2000) A new species of Scutellospora with a coiled germination shield. Ann Bot 86:21–27CrossRefGoogle Scholar
  55. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2011) A phylogenetic framework for the natural systematics of arbuscular mycorrhizal fungi - from phylum to species-level resolution and environmental deep sequencing. New Phytol: in revisionGoogle Scholar
  56. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223PubMedCrossRefGoogle Scholar
  57. Krüger M, Walker C, Schüßler A (2011) Acaulospora brasiliensis comb. nov. and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA based detection in roots. Mycorrhiza. doi: 10.1007/s00572-011-0361-7
  58. Kuga Y, Saito K, Nayuki K, Peterson RL, Saito M (2008) Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytol 178:189–200PubMedCrossRefGoogle Scholar
  59. Lanfranco L, Delpero M, Bonfante P (1999) Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Mol Ecol 8:37–45PubMedCrossRefGoogle Scholar
  60. Lee J, Young JP (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211PubMedCrossRefGoogle Scholar
  61. Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105CrossRefGoogle Scholar
  62. LoBuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592–604CrossRefGoogle Scholar
  63. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729PubMedCrossRefGoogle Scholar
  64. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748PubMedCrossRefGoogle Scholar
  65. Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A (2008) Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 45:812–817PubMedCrossRefGoogle Scholar
  66. Mayden RL (1997) A hierarchy of species concepts: The denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, New York, pp 381–424Google Scholar
  67. Mercereau-Puijalon O, Barale JC, Bischoff E (2002) Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol 32:1323–1344PubMedCrossRefGoogle Scholar
  68. Morton JB (2000) Evolution of endophytism in arbuscular mycorrhizal fungi of Glomales. In: Bacon CW, White JH (eds) Microbial endophytes. Dekker, New York, pp 121–140Google Scholar
  69. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporacea and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491Google Scholar
  70. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera, Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195CrossRefGoogle Scholar
  71. Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496Google Scholar
  72. Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974PubMedCrossRefGoogle Scholar
  73. Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483CrossRefGoogle Scholar
  74. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  75. Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871PubMedCrossRefGoogle Scholar
  76. Nicolson TH, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325CrossRefGoogle Scholar
  77. Nielsen KB, Kjøller R, Olsson PA, Schweiger PF, Andersen FØ, Rosendahl S (2004) Colonization intensity and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in Southern Sweden. Mycol Res 108:616–625PubMedCrossRefGoogle Scholar
  78. Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Linn Soc 79:69–84CrossRefGoogle Scholar
  79. O'Donnell K, Lutzoni F, Ward TJ, Benny GL (2001) Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93:286–297CrossRefGoogle Scholar
  80. Öpik M, Moora M, Zobel M, Saks Ü, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876PubMedCrossRefGoogle Scholar
  81. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763–776CrossRefGoogle Scholar
  82. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737PubMedCrossRefGoogle Scholar
  83. Peyronel B (1937) Le “Endogyne” quail produttrici di micorrize endotrofische nell fanerogame alpestri. Nuovo Gior Bot Ital N S 44:584–586CrossRefGoogle Scholar
  84. Phipps CJ, Taylor TN (1996) Mixed arbuscular-mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714CrossRefGoogle Scholar
  85. Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36Google Scholar
  86. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164PubMedCrossRefGoogle Scholar
  87. Poxleitner MK, Carpenter ML, Mancuso JJ, Wang CJR, Dawson SC, Cande WZ (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319:1530–1533PubMedCrossRefGoogle Scholar
  88. Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  89. Redecker D (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244:67–73CrossRefGoogle Scholar
  90. Redecker D, Hijri M, Dulieu H, Sanders IR (1999) Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of Internal Transcribed Spacers reported from Scutellospora castanea are of Ascomycete origin. Fungal Genet Biol 28:238–244PubMedCrossRefGoogle Scholar
  91. Redecker D, Kodner R, Graham LE (2000a) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  92. Redecker D, Morton JB, Bruns TD (2000b) Molecular phylogeny of the arbuscular mycorrhizal fungi Glomus sinuosum and Sclerocystis coremioides. Mycologia 92:282–285CrossRefGoogle Scholar
  93. Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Progress 6:35–44CrossRefGoogle Scholar
  94. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  95. Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  96. Requena N, Breuninger M, Franken P, Ocón A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+−ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549PubMedCrossRefGoogle Scholar
  97. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754CrossRefGoogle Scholar
  98. Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266PubMedCrossRefGoogle Scholar
  99. Rosendahl S, McGee P, Morton JB. (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329PubMedCrossRefGoogle Scholar
  100. Rubinstein CV, Gerrienne P, De La Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369PubMedCrossRefGoogle Scholar
  101. Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246PubMedCrossRefGoogle Scholar
  102. Schüßler A (1999) Glomales SSU rRNA gene diversity. New Phytol 144:205–207CrossRefGoogle Scholar
  103. Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15–21CrossRefGoogle Scholar
  104. Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83CrossRefGoogle Scholar
  105. Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota, vol 9. Fungal associations. Springer, Berlin Heidelberg New York, pp 151–161Google Scholar
  106. Schüßler A, Wolf E (2005) Geosiphon pyriformis – a glomeromycotan soil fungus forming endosymbiosis with cyanobacteria. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas, Soil biology, vol 4. Springer, Berlin Heidelberg New York, pp 271–289CrossRefGoogle Scholar
  107. Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Botanica Acta 107:36–45Google Scholar
  108. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  109. Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936PubMedCrossRefGoogle Scholar
  110. Schüßler A, Martin H, Cohen D, Wipf D (2008) The Geosiphon–Nostoc symbiosis as a tool to characterize symbiotic nutrient transporters in the arbuscular mycorrhiza symbiosis. Biol Mol Plant Microbe Interact 6:1–6Google Scholar
  111. Schüßler A, Walker C (2010) Arbuscular Mycorrhizal Fungi: placing an experimental model fungus in its natural systematic relationship - culture BEG47 is Diversispora epigaea, not Glomus versiforme. PLoS ONE: in revisionGoogle Scholar
  112. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Arthur Schüßler & Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at www.amf-phylogeny.com Google Scholar
  113. Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197PubMedCrossRefGoogle Scholar
  114. Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:69–81Google Scholar
  115. Simon L, Bousquet J, Le!vesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69Google Scholar
  116. Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Nat Acad Sci 107:5897–5902PubMedCrossRefGoogle Scholar
  117. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  118. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  119. Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge Univ Press, CambridgeGoogle Scholar
  120. Stockinger H, Walker C, Schüßler A (2009) Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187PubMedCrossRefGoogle Scholar
  121. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474PubMedCrossRefGoogle Scholar
  122. Strullu-Derrien C, Strullu DG (2007) Mycorrhization of fossil and living plants. Crit Rev Paleoevol 6:483–494Google Scholar
  123. Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237:59–60PubMedCrossRefGoogle Scholar
  124. Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp) studied by multilocus genotyping of single spores. Mol Ecol 14:743–752PubMedCrossRefGoogle Scholar
  125. Taga M, Tsuchiya D, Murata M (2003) Dynamic changes of rDNA condensation state during mitosis in filamentous fungi revealed by fluorescence in situ hybridisation. Mycol Res 107:1012–1020PubMedCrossRefGoogle Scholar
  126. Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J (2003) Molecular phylogeny of Zygomycota based on EF-1a and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol Phylogen Evol 30:438–449CrossRefGoogle Scholar
  127. Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849PubMedCrossRefGoogle Scholar
  128. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  129. Thaxter R (1922) A revision of the Endogoneae. Proc Am Acad Arts Sci 57:291–351CrossRefGoogle Scholar
  130. Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8:203–206CrossRefGoogle Scholar
  131. Tulasne LR, Tulasne C (1845) Fungi nonnulli hypogaei, novi v. minus cogniti act. Giorn Bot Ital 2:35–63Google Scholar
  132. Tulasne LR, Tulasne C (1851) Fungi hypogaei, 1st edn. ParisGoogle Scholar
  133. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  134. van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887PubMedCrossRefGoogle Scholar
  135. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564PubMedCrossRefGoogle Scholar
  136. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Coexisting grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095PubMedCrossRefGoogle Scholar
  137. Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestors of land plants suggests a key role of mycorrhizas in the colonization of land plants. New Phytol 186:514–525PubMedCrossRefGoogle Scholar
  138. Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. and Trappe. Mycotaxon 27:169–182Google Scholar
  139. Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982CrossRefGoogle Scholar
  140. Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153PubMedCrossRefGoogle Scholar
  141. Wellman CH, Osterloff PL, Mohluddin U (2003) Fragments of the earliest land plants. Nature 425:282–285PubMedCrossRefGoogle Scholar
  142. Yadav, V, Kumar, M, Deep, DK, Kumar, H, Sharma, R, Tripathi, T, Tuteja, N, Saxena, AK, Johri, AK (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285:26532–26544PubMedCrossRefGoogle Scholar
  143. Zhang, Q, Blaylock, LA, Harrison, MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Genetics, Department of BiologyUniversity of Munich (LMU)MartinsriedGermany
  2. 2.Royal Botanic Garden EdinburghEdinburghUK
  3. 3.School of Earth Sciences and EnvironmentUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations