Advertisement

1 The Protistan Origins of Animals and Fungi

  • Martin CarrEmail author
  • Sandra L. Baldauf
Chapter
Part of the The Mycota book series (MYCOTA, volume 14)

Abstract

A close evolutionary relationship between Metazoa (animals) and Fungi was proposed over 20 years ago. The name Opisthokonta reflects the presence of a single, posteriorly directed flagellum found on the reproductive cells of most metazoans and some fungi. Subsequent molecular work confirmed this relationship and also identified several protistan groups (including the choanoflagellates, ichthyosporeans and nucleariids) belonging to this clade. In this chapter we review the literature on this group in order to describe the opisthokont lineages and the current thinking about how they are related to each other. The phylogeny of the opisthokonts is far from complete and we will discuss the areas that need to be addressed, as well as current evidence on the possible sister-groups of the opisthokonts.

Keywords

Molecular Phylogeny Dispersal Cell Multiple Occasion Amoeboid Cell Last Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abedin M and King N (2008) The premetazoan ancestry of cadherins. Science 319:946–948PubMedCrossRefGoogle Scholar
  2. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, et al. (2005) The new higher level of classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  3. Aguinaldo AA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  4. Ahluwalia KBN, Maheshwari N, Deka RC (1997) Rhinosporidiosis: a study that resolves etiologic controversies. Am J Rhinol 11:479–483PubMedCrossRefGoogle Scholar
  5. Amaral-Zettler LA, Nerad TA, O’Kelly J, Sogin ML (2001) The nucleariid amoebae: more protists at the animal–fungal boundary. J Euk Microbiol 48:293–297CrossRefGoogle Scholar
  6. Amaral-Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:417CrossRefGoogle Scholar
  7. Anderson CL, Canning EU, Okamura B (1998) A triploblasts origin for Myxozoa? Nature 392:346–347PubMedCrossRefGoogle Scholar
  8. Anderson FE, Córdoba AJ, Thollesson M (2004) Bilaterian phylogeny based on analyses of a region of the sodium–potassium ATPase α-subunit gene. J Mol Evol 58:252–268PubMedCrossRefGoogle Scholar
  9. Arkush, KD, Frasca S Jr, Hedrick RP (1998) Pathology associated with the rosette agent, a systemic protist infecting salmonid fishes. J Aquat Anim Health 10:1–11CrossRefGoogle Scholar
  10. Baker GC, Beebee TJ, Ragan MA (1999) Prototheca richardsi, a pathogen of anuran larvae, is related to a clade of protistan parasites near the animal–fungal divergence. Microbiology 145:1777–1784PubMedCrossRefGoogle Scholar
  11. Baldauf SL, Palmer JD (1993) Animals and fungi are each others closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562PubMedCrossRefGoogle Scholar
  12. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominant fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077PubMedCrossRefGoogle Scholar
  13. Bass D, Moreira D, López-García P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161PubMedCrossRefGoogle Scholar
  14. Baurain D, Brinkmann H, Philippe H (2007) Lack of resolution in the animal phylogeny: Closely spaced cladogeneses or undetected systematic errors? Mol Biol Evol 24:6–9PubMedCrossRefGoogle Scholar
  15. Benny GL, O’Donnell K (2000) Amoebidium parasiticum is a protozoan, not a Trichomycete. Mycologica 92:1133–1137CrossRefGoogle Scholar
  16. Boenigk J, Arndt H (2000) Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aqua Micro Eco 22:243–249CrossRefGoogle Scholar
  17. Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179CrossRefGoogle Scholar
  18. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88PubMedCrossRefGoogle Scholar
  19. Bourlat SJ, Nielsen C, Economou AD, Telford M (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31PubMedCrossRefGoogle Scholar
  20. Bourrelly P (1968) Les algues d’eau douce. Tome II: Les algues jaunes et brunes. Paris: Boubée et CieGoogle Scholar
  21. Bozarth RF (1972) Mycoviruses: a new dimension in microbiology. Environ Health Perspect 2:23–39PubMedCrossRefGoogle Scholar
  22. Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709PubMedCrossRefGoogle Scholar
  23. Brown TA, Waring RB, Scazzocchio C, Davies RW (1985) The Aspergillus nidulans mitochondrial genome. Curr Genet 9:113–117PubMedCrossRefGoogle Scholar
  24. Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Research 31:759–768PubMedCrossRefGoogle Scholar
  25. Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA 100:892–897PubMedCrossRefGoogle Scholar
  26. Burger G, Yan Y, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386PubMedCrossRefGoogle Scholar
  27. Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 8:e790CrossRefGoogle Scholar
  28. Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 23:366–369CrossRefGoogle Scholar
  29. Buss KW (1987) The evolution of individuality. Princeton University Press, Princeton. 203 ppGoogle Scholar
  30. Cafaro MJ (2005) Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. Mol Phy Evol 35:21–34CrossRefGoogle Scholar
  31. Cann JP (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida) J Euk Microbiol 33:392–396Google Scholar
  32. Cardoso MAG, Tambor JHM, Nobrega FG (2007) The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis. Yeast 24:607–616PubMedCrossRefGoogle Scholar
  33. Carr M, Leadbeater BSC, Baldauf SL (2010). Conserved meiotic genes point to sex in the choanoflagellates. J Euk Microbiol 57:56–62PubMedCrossRefGoogle Scholar
  34. Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL (2008a). Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA 105:16641–16646PubMedCrossRefGoogle Scholar
  35. Carr M, Nelson M, Leadbeater BSC, Baldauf SL (2008b) Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist 159:579–590PubMedCrossRefGoogle Scholar
  36. Cavalier-Smith T (1987) The origin of fungi and pseudofungi in: Rayner ADM, Brasierand M and Moore D (eds.) Evolutionary biology of fungi, pp. 339–353, Cambridge: Cambridge University PressGoogle Scholar
  37. Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiological Reviews 57:953–994PubMedGoogle Scholar
  38. Cavalier-Smith T (1998) A revised six kingdom system of life. Biol Rev 73:203–266PubMedCrossRefGoogle Scholar
  39. Cavalier-Smith T (2000) Flagellate megaevolution: The basis for eukaryote diversification. In: Green J.R., Leadbeater, B.S.C. (eds) The flagellates. Taylor and Francis, London, pp 361–390Google Scholar
  40. Cavalier-Smith T (2001) What are fungi?, in J.W. McLaughlin, J.W. McLaughlin and P.A. Lemke (eds.) The Mycota VII Part A, Systematics and evolution, pp. 3–37, Berlin Heidelberg: Springer VerlagCrossRefGoogle Scholar
  41. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedGoogle Scholar
  42. Cavalier-Smith T (2003) Protist phylogeny and the high-level classification of Protozoa. Europ J Protistol 39:338–349CrossRefGoogle Scholar
  43. Cavalier-Smith T (2009) Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryotic basal radiations. J Eukaryot Microbiol 56:26–33PubMedCrossRefGoogle Scholar
  44. Cavalier-Smith T, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Europ J Protistol 32:306–310CrossRefGoogle Scholar
  45. Cavalier-Smith, T, Chao EEY (1995) The opalozoan Apusomonas is related to the common ancestor of animals, fungi and choanoflagellates. Proc R Soc B 261:1Google Scholar
  46. Cavalier-Smith, T, Chao EEY (1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147:227–236CrossRefGoogle Scholar
  47. Cavalier-Smith, T, Chao EEY (2003) Phylogeny of Choanozoa, Apusozoa, and other protozoa and early eukaryotic megaevolution. J Mol Evol 56:540–563PubMedCrossRefGoogle Scholar
  48. Cavalier-Smith, T, Chao EEY, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Europ J Protistol 40:21–48CrossRefGoogle Scholar
  49. Chadefaud M (1960) Les végétaux non vasulaires (Cryptogamie). Traité de botanique systématique, vol. 3. Chadeauf and Emberger. pp. 1018. Paris: Massor et CieGoogle Scholar
  50. Chen M, Chen F, Yu Y, Ji J, Kong F (2008) Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical lake in China. Microb Ecol 56:572–583PubMedCrossRefGoogle Scholar
  51. Cummings DJ, Mcnally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17:375–402PubMedCrossRefGoogle Scholar
  52. Deasey MC (1982) Aspects of sorogenesis in the cellular slime mold Fonticula alba. PhD thesis, University of North Carolina, Chapel HillGoogle Scholar
  53. Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno MA, Buss LW, Schierwater B (2006) Mitochondrial genome of Trichoplax adhaerens support Placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 103:8751–8756CrossRefGoogle Scholar
  54. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  55. Dyková I, Veverková M, Fiala I, Machácková B, Pecková H (2003) Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasit 50:161–170Google Scholar
  56. Erpenbeck D, Voigt O, Adamski M, Adamska M, Hooper JNA, Wörheide G, Degnan BM (2007) Mitochondrial diversity of early-branching Metazoa is revealed by the complete mt genome of a Haplosclerid Demosponge. Mol Biol Evol 24:19–22PubMedCrossRefGoogle Scholar
  57. Farabee MJ (2002). Biological diversity: animals I, II and III, in: Online biology book. Available at http://www.emc.maricopa.edu/faculty/farabee/BIOBK/ BioBookTOC.HTML
  58. Feldman SH, Wimsatt JH, Green DE (2005) Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing. J Wildl Dis 41:701–706PubMedGoogle Scholar
  59. Gill EE, Fast NM (2006) Assessing the microsporidia–fungi relationship: combined phylogenetic analysis of eight genes. Gene 375:103–109PubMedCrossRefGoogle Scholar
  60. Gromov BV (2000) Algal parasites of the genera Aphelidium, Amoeboaphelidium, and Pseudoaphelidium from the Cienkovski’s “Monadinea” group as representatives of a new class. Zool Zhurn 79:517–525Google Scholar
  61. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromoalveolates. Mol Biol Evol 24:1702–1713PubMedCrossRefGoogle Scholar
  62. Haeckel E (1874) Die Gastraea-Theorie, die phylogenetischen Classification des Thierreichs und die Homologie der Keimblätter. Z Naturwiss 8:1–55Google Scholar
  63. Haen KM, Lang BF, Pomponi SA, Lavrov DV (2007) Glass sponges and bilaterian animals share derived mitochondrial genomic features: A common ancestry or parallel evolution? Mol Biol Evol 24:1518–1527PubMedCrossRefGoogle Scholar
  64. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256CrossRefGoogle Scholar
  65. Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  66. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB and Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864PubMedCrossRefGoogle Scholar
  67. Harrell LW, Elston RA, Scott TM, Wilkinson MT (1986) A significant new systemic disease of net-pen reared chinook salmon (Oncorhyncus tshawytscha) brook stock. Aquaculture 55:249–262CrossRefGoogle Scholar
  68. Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386PubMedCrossRefGoogle Scholar
  69. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309CrossRefGoogle Scholar
  70. Herman RL (1984) Ichthyophonus-like infection in newts (Notophthalmus viridescens Rafinesque) J Wildlife Dis 20:55–56Google Scholar
  71. Herr RA, Ajello L, Taylor JW, Arseculeratne SN, Mendoza L (1999) Phylogenetic analysis of Rhinosporidium seeberis 18S small-subunit ribosomal DNA groups this pathogen among members of the protoctistan Mesomycetozoa clade. J Clin Microbiol 37:2750–2754PubMedGoogle Scholar
  72. Hertel LA, Bayne C, Loker ES (2002) The symbiont Capsaspora owczarzaki, nov. gen. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoa. Int J Parasit 32:1183–1191CrossRefGoogle Scholar
  73. Hibberd DJ (1975) Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (ehr.) Saville–Kent with special reference to the flagellar apparatus. J Cell Sci 17:191–219PubMedGoogle Scholar
  74. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  75. Hyman LH (1940) The Invertebrates, vol. 1, New York: McGraw-HillGoogle Scholar
  76. James TY, Kauff F, Schoch L, Matheny PB, Hofstetter V, et al. (2006a) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  77. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Grffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota) Mycologia 98:860–871Google Scholar
  78. James-Clark H (1866) Note on the infusoria flagellata and the spongiae ciliatae. Am J Sci 1:113–114Google Scholar
  79. James-Clark H (1868) On the spongiae ciliatae as infusoria flagellata; or observations on the structure, animality and relationship of Leucosolenia botryoides, Bowerbank. Ann Mag Nat Hist 1:133–142Google Scholar
  80. Jay JM, Pohley WJ (1981) Dermosporidium penneri sp. n. from the skin of the American toad, Bufo americanus (Amphibia: Bufonidae). J Parasitology 67:108–110CrossRefGoogle Scholar
  81. Jiménez-Guri E, Philippe H, Okamura B, Holland PWH (2007) Buddenbrockia is a cnidarian worm. Science 317:116–118PubMedCrossRefGoogle Scholar
  82. Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature (in press)Google Scholar
  83. Karpov SA and Leadbeater BSC (1997) Cytoskeleton structure and composition in choanoflagellates. Europ J Protistol 33:323–334CrossRefGoogle Scholar
  84. Keeling PJ (2003) Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309PubMedCrossRefGoogle Scholar
  85. Kent SW (1880) A manual of the Infusoria, vols 1–3 (1880–1882). Kent, LondonGoogle Scholar
  86. Kim E, Simpson AGB, Graham LE (2006) Evolutionary relationships of Apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466PubMedCrossRefGoogle Scholar
  87. Kimura H, Harada K, Hara K, Tamaki A (2002) Enzymatic approach to fungal association with arthropod guts: a case study for the crustacean host, Nihonotrypaea harmandi, and its foregut fungus, Enteromyces callianassae. Mar Ecol 23:157–183CrossRefGoogle Scholar
  88. King N (2005) Choanoflagellates. Curr Biol 15:R113–R114PubMedCrossRefGoogle Scholar
  89. King N and Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci USA 98:15032–15037PubMedCrossRefGoogle Scholar
  90. King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363PubMedCrossRefGoogle Scholar
  91. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788PubMedCrossRefGoogle Scholar
  92. Kodner RB, Summons RE, Pearson A, King N, Knoll AH (2008) Sterols in a unicellular relative of the metazoans. Proc Natl Acad Sci USA 105:9897–9902PubMedCrossRefGoogle Scholar
  93. Kruger W (1894) Kurze Charakteristik einiget niederer Organismen in Saftlusse der Laubbaume. Hedwigia 33:241–266Google Scholar
  94. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworths & Bisbys dictionary of the fungi, 9th edn, Wallingford: CABI publishingGoogle Scholar
  95. Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397PubMedCrossRefGoogle Scholar
  96. Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of Animals. Current Biology 12:1773–1778PubMedCrossRefGoogle Scholar
  97. Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121PubMedCrossRefGoogle Scholar
  98. Lavrov DV, Forget L, Kelly M, Lang BF (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 22:1231–1239PubMedCrossRefGoogle Scholar
  99. Leadbeater BSC (1979) Developmental studies in the loricate choanoflagellate Stephanoeca diplocostata. II. Cell division and lorica assembly. Protoplasma 98:311–328Google Scholar
  100. Leadbeater BSC, Hassan R, Nelson M, Carr M, Baldauf SL (2008) A new genus, Helgoeca gen. nov., for a nudiform choanoflagellate. Europ J Protistol 44:227–237CrossRefGoogle Scholar
  101. Leadbeater BSC, Morton C (1974) A microscopical study of a marine species of Codosiga James-Clark (Choanoflagellata) with special reference to the ingestion of bacteria. Biol J Linn Soc 6:337–347CrossRefGoogle Scholar
  102. Leadbeater BSC, Yu Q, Kent J, Stekel DJ (2009) Three-dimensional images of choanoflagellate loricae. Proc. R. Soc. B 276:3–11PubMedCrossRefGoogle Scholar
  103. Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol. 183:200–211PubMedCrossRefGoogle Scholar
  104. Lee SC, Corradi N, Byrnes III EJ, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Current Biology 18:1675–1679PubMedCrossRefGoogle Scholar
  105. Lepère C, Domaizon I, Debroas D (2008) Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949PubMedCrossRefGoogle Scholar
  106. Lichtwardt RW (1986) The Trichomycetes: Fungal associates of arthropods. Springer-Verlag, New York pp 343Google Scholar
  107. Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology 6:74PubMedCrossRefGoogle Scholar
  108. Liu Y, Leigh JW, Brinkmann H, Cushion MT, Rodriguez-Ezpeleta N, Philippe H, Lang BF (2009) Phylogenomic analyses support the monophyly of Taphrinomycotina, including Schizosaccharomyces fission yeasts. Mol Biol Evol 26:27–34PubMedCrossRefGoogle Scholar
  109. Loytynoja A, Milikovitch MC (2001) Molecular phylogenetic analyses of the mitochondrial ADP–ATP carriers: the Plantae/Fungi/Metazoa trichotomy revisited. Proc Natl Acad Sci USA 98:10202–10207PubMedCrossRefGoogle Scholar
  110. Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invert Bio 123:1–22CrossRefGoogle Scholar
  111. Mallatt JM, Garey JR, Schultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phy Evol 31:178–191CrossRefGoogle Scholar
  112. Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci USA 105:9674–9679PubMedCrossRefGoogle Scholar
  113. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103:11195–11200PubMedCrossRefGoogle Scholar
  114. Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci USA 98:9707–9712PubMedCrossRefGoogle Scholar
  115. Medina M, Collins AG, Taylor JW, Valentine JW, Lipps JH, Amaral-Zettler L, Sogin ML (2003) Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa. Int J Astro 2:203–211CrossRefGoogle Scholar
  116. Mendoza L, Ajello L, Taylor JW (2001) The taxonomic status of Lacazia loboi and Rhinosporidium seeberi has been finally resolved with the use of molecular tools. Rev Iberoam Micol 18:95–98PubMedGoogle Scholar
  117. Mendoza L, Taylor JW, Ajello L (2002) The Class Mesomycetozoa: a heterogeneous group of microorganisms at the animal–fungal boundary. Annu Rev Microbiol 56:315–344PubMedCrossRefGoogle Scholar
  118. Minge MA, Silberman JD, Orr RJS, Cavalier-Smith T, Shalchian-Tabrizi K, Burki F, Skjæveland Å, Jakobsen KS (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. Proc R Soc B 276:597–604PubMedCrossRefGoogle Scholar
  119. Monteiro AS, Okamura B, Holland PWH (2002) Orphan worm finds a home: Buddenbrockia is a myxozoan. Mol Biol Evol 19:968–971PubMedCrossRefGoogle Scholar
  120. Moreira D, von der Heyden S, Bass D, López-García P, Chao EEY, Cavalier-Smith T (2007) Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 44:255–266PubMedCrossRefGoogle Scholar
  121. Norris RE (1965) Neustonic marine Craspedomonadales (Choanoflagellata) from Washington and California. J Protozool 12:589–612Google Scholar
  122. Ordás MC, Figueras A (1998) In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussates. Dis Aquat Org 33:129–136CrossRefGoogle Scholar
  123. Owczarzak A, Stibbs HH, Bayne CJ (1980) The destruction of Schistosoma mansoni mother sporocysts in vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructural study. J Inver Path 35:26–33CrossRefGoogle Scholar
  124. Page FC (1987) The classification of ‘naked’ amoebae (Phylum Rhizopoda). Arch Protistenk 133:199–217CrossRefGoogle Scholar
  125. Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Current Biology 17:887–891PubMedCrossRefGoogle Scholar
  126. Patterson DJ (1984) The genus Nuclearia (Sarcodina, Filosea): species composition and characteristics of the taxa. Arch Protistenk 128:127–139CrossRefGoogle Scholar
  127. Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154(Suppl):S86–S124.Google Scholar
  128. Patterson DJ, Nygaard K, Steinberg G, Turley C (1993) Heterotrophic flagellates and other protists associated with organic detritus throughout the water column in the mid North Atlantic. J Mar Biol Assoc UK 73:67–95CrossRefGoogle Scholar
  129. Perry RP, Cheng TY, Freed JJ, Greenberg JR, Kelley DE, Tartof KD (1970) Evolution of the transcription unit of ribosomal RNA. Proc Natl Acad Sci USA 65:609–616PubMedCrossRefGoogle Scholar
  130. Pettitt ME, Orme BAA, Blake JR, Leadbeater BSC (2002) The hydrodynamics of filter feeding in choanoflagellates. Europ J Protistol 38:313–332CrossRefGoogle Scholar
  131. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712PubMedCrossRefGoogle Scholar
  132. Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004) Phylogenomics of eukaryotes: Impact of missing data on large alignments. Mol Biol Evol 21:1740–1752PubMedCrossRefGoogle Scholar
  133. Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends in Ecology and Evolution 21:614–620PubMedCrossRefGoogle Scholar
  134. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 5:153–164CrossRefGoogle Scholar
  135. Powell MJ (1984) Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenea. Mycologia 76:1039–1048CrossRefGoogle Scholar
  136. Ragan MA, Goggins CL, Cawthorn RJ, Cerenius L, Jamienson AVC, et al. (1998) A novel clade of protistan parasites near the animal–fungal divergence. Proc Natl Acad Sci USA 93:11907–11912CrossRefGoogle Scholar
  137. Raghu-Kumar S, Chandramohan D, Ramaiah N (1987) Contribution of the thraustochytrid Corallochytrium limacisporum Raghu-Kumar to microbial biomass in coral reef lagoons. Ind J Marine Sciences 16:122–125Google Scholar
  138. Rand TG (1994) An unusual form of Ichthyophonus hoferi from yellowtail flounder Limanda Ferruginea from the Nova Scotia shelf. Dis Aquat Org 18:21–28CrossRefGoogle Scholar
  139. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  140. Ruiz-Trillo I, Inagaki Y, Davis LA, Sperstad S, Landfald B, Roger AJ (2004) Capsaspora owczarzaki is an independent opisthokont lineage. Curr Biol 14:R946PubMedCrossRefGoogle Scholar
  141. Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ (2006) Insights into the evolutionary origin and genome architecture of the unicellular Opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 53:379–384PubMedCrossRefGoogle Scholar
  142. Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray MW (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118PubMedCrossRefGoogle Scholar
  143. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of Metazoa. Mol Biol Evol 25:664–672PubMedCrossRefGoogle Scholar
  144. Sáez AG, Lozano E, Zaldívar-Riverón A (2009) Evolutionary history of Na,K-ATPases and their osmoregulatory role. Genetica 136:479–490PubMedCrossRefGoogle Scholar
  145. Schierwater B (2005) My favorite animal, Trichoplax adhaerens. Bioessays 27:1294–1302PubMedCrossRefGoogle Scholar
  146. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS One 3:e2098PubMedCrossRefGoogle Scholar
  147. Signorovitch AY, Buss LW, Dellaporta SL (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genetics 3:44–50CrossRefGoogle Scholar
  148. Smothers JF, von Dohlen CD, Smith Jr LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265:1719–1721PubMedCrossRefGoogle Scholar
  149. Spanggaard B, Skouboe P, Rossen L, Taylor JW (1996) Phylogeneti relationships of the intercellular fish pathogen Ichthyophonus hoferi, and fungi, choanoflagellates and the rosette agent. Mar Biol 126:109–115CrossRefGoogle Scholar
  150. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, et al. (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960PubMedCrossRefGoogle Scholar
  151. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463PubMedCrossRefGoogle Scholar
  152. Stechmann A, Cavalier-Smith T (2003) Phylogenetic analysis of eukaryotes using heat–shock protein Hsp90. J Mol Evol 57:408–419PubMedCrossRefGoogle Scholar
  153. Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106PubMedCrossRefGoogle Scholar
  154. Stibbs HH, Owczarzak A, Bayne CJ, DeWan P (1979) Schistosome sporocyst-killing amoebae isolated from Biomphalaria glabrata. J Invert Pathol 33:159–170CrossRefGoogle Scholar
  155. Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C (2006) Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. Protist 157:363–376PubMedCrossRefGoogle Scholar
  156. Tanabe Y, Watanabe MM, Sugiyama J (2005) Evolutionary relationships among basal fungi (Chytridiomycota and Zygomycota): Insights from molecular phylogenetics. J Gen Appl Microbiol 51:267–276PubMedCrossRefGoogle Scholar
  157. Takashita K Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic Lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64CrossRefGoogle Scholar
  158. Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4:227–277CrossRefGoogle Scholar
  159. Tehler A, Farris JS, Lipscomb DL and Källersjö M (2000) Phylogenetic analyses of the fungi based on large rDNA data sets. Mycologia 92:459–474CrossRefGoogle Scholar
  160. Telford MJ (2006) Animal phylogeny. Curr Biol 16:R981–R985PubMedCrossRefGoogle Scholar
  161. Trotter MJ, Whisler HC (1965) Chemical composition of the cell wall of Amoebidium parasiticum. Can J Bot 43:869–876CrossRefGoogle Scholar
  162. van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Rev 55:586–620PubMedGoogle Scholar
  163. van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, van Laanbroek P (1999) Detritus-dependent development of the microbial community in an experimental system: quality analysis by denaturing gradient gel electrophoresis. Appl Env Micro 65:2478–2484Google Scholar
  164. Voigt K, Wöstemeyer J (2001) Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. Gene 270:113–120PubMedCrossRefGoogle Scholar
  165. Voigt O, Collins AG, Buchsbaum Pearse V, Pearse JS, Ender A, Hadrys H, Schierwater B (2004) Placozoa – no longer a phylum of one. Curr Biol 14:R944–R945CrossRefGoogle Scholar
  166. Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340–342PubMedCrossRefGoogle Scholar
  167. Wallberg A, Thollesson M, Farris JS, Jondelius U (2004) The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20:558–578CrossRefGoogle Scholar
  168. Wang X, Lavrov DV (2007) Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol Biol Evol 24:363–373PubMedCrossRefGoogle Scholar
  169. White MM, James TY, O’Donnell, Cafaro MJ, Tanabe Y, Sugiyama J (2006) Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98:872–884PubMedCrossRefGoogle Scholar
  170. Woo PC, Zhen H, Cai JJ, Yu J, Lau SK, Wang J, Teng JL, Wong SS, Tse RH, Chen R, Yang H, Liu B, Yuen KY (2003) The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of moulds than yeasts. FEBS Lett 555:469–477PubMedCrossRefGoogle Scholar
  171. Worley AC, Raper KB, Hohl M (1979) Fonticula alba: a new cellular slime mold (Acrasiomycetes). Mycologia 71:746–76CrossRefGoogle Scholar
  172. Yoshida M, Nakayama T, Inouye I (2009) Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur J Protistol 45:147–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.LC Miall Building, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  2. 2.Department of Systematic Biology, Evolutionary Biology CentreUniversity of UppsalaUppsalaSweden

Personalised recommendations