Agent-Based Modelling of the Emergence of Collective States Based on Contagion of Individual States in Groups

  • Mark Hoogendoorn
  • Jan Treur
  • C. Natalie van der Wal
  • Arlette van Wissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6560)


This paper introduces a neurologically inspired computational model for the dynamics and diffusion of agent states within groups. The model combines an individual model based on Damasio’s Somatic Marker Hypothesis with mutual effects of group members on each other via mirroring of individual states such as emotions, beliefs and intentions. The obtained model shows how this combination of assumed neural mechanisms can form an adequate basis for the emergence of common group beliefs and intentions, while, in addition there is a positive feeling with these common states amongst the group members. A particular issue addressed is how certain types of states may affect other types of states, for example, emotions have an effect on beliefs and intentions, and beliefs may effect emotions.


Emotion Contagion Mirror Neuron Belief State Negative Information Collective State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barsade, S.G.: The ripple effect: Emotional contagion and its influence on group behavior. Administrative Science Quarterly 47(4), 644–675 (2002)CrossRefGoogle Scholar
  2. 2.
    Bechara, A., Damasio, A.: The Somatic Marker Hypothesis: a neural theory of economic decision. Games and Economic Behavior 52, 336–372 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bodenhausen, G.V., Sheppard, L., Kramer, G.: Negative affect and social judgment: The differential impact of anger and sadness. European Journal of Social Psychology 24, 45–62 (1994)CrossRefGoogle Scholar
  4. 4.
    Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: A Multi-agent Model for Mutual Absorption of Emotions. In: Otamendi, J., et al. (eds.) Proceedings of the 23rd European Conference on Modelling and Simulation, ECMS 2009, pp. 212–218 (2009)Google Scholar
  5. 5.
    Bosse, T., Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: A Multi-Agent Model for Emotion Contagion Spirals Integrated within a Supporting Ambient Agent Model. In: Yang, J.-J., et al. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 48–67. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and Verification of Dynamics in Agent Models. International Journal of Cooperative Information Systems 18, 167–193 (2009)CrossRefGoogle Scholar
  7. 7.
    Boulahanis, J., Heltsley, M.: Perceived Fears: The Reporting Patterns of Juvenile Homicide in Chicago Newspapers. Criminal Justice Policy Review 15(132) (2004)Google Scholar
  8. 8.
    Chen, E., Lewin, M., Craske, M.: Effects of state anxiety on selective processing of threatening information. Cognition and Emotion 10, 225–240 (1996)CrossRefGoogle Scholar
  9. 9.
    Côté, S.: Reconciling the feelings-as-information and hedonic contingency models of how mood influences systematic information processing. J. of Applied Soc. Psychology 35(8), 1656–1679 (2005)CrossRefGoogle Scholar
  10. 10.
    Damasio, A.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, London (1994)Google Scholar
  11. 11.
    Damasio, A.: The Feeling of What Happens. Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)Google Scholar
  12. 12.
    Damasio, A.: Looking for Spinoza. Vintage books, London (2003)Google Scholar
  13. 13.
    Damasio, A.: The Somatic Marker Hypothesis and the Possible Functions of the Prefrontal Cortex. Philosophical Transactions of the Royal Society: Biological Sciences 351, 1413–1420 (1996)CrossRefGoogle Scholar
  14. 14.
    Damasio, A., Meyer, K.: Behind the looking-glass. Nature 454, 167–168 (2008)CrossRefGoogle Scholar
  15. 15.
    Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: An Ambient Agent Model for Group Emotion Support. In: Cohn, J., Nijholt, A., Pantic, M. (eds.) Proceedings of the Third International Conference on Affective Computing and Intelligent Interaction, ACII 2009, pp. 550–557. IEEE Computer Society Press, Los Alamitos (2009)Google Scholar
  16. 16.
    Duell, R., Memon, Z.A., Treur, J., van der Wal, C.N.: An Ambient Agent Model for Group Emotion Support. In: Proc. of the Third Intern. Conf. on Affective Computing and Intelligent Interaction, ACII 2009, pp. 550–557. IEEE Computer Society Press, Los Alamitos (2009)Google Scholar
  17. 17.
    Frederickson, B.L.: The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist 56, 218–226 (2001)CrossRefGoogle Scholar
  18. 18.
    Frederickson, B.L., Branigan, C.: Positive Emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion 19(3), 313–332 (2005)CrossRefGoogle Scholar
  19. 19.
    Friedman, H., Riggio, R.: Effect of Individual Differences in Nonverbal Expressiveness on Transmission of Emotion. Journal of Nonverbal Behavior 6(2) (1981)Google Scholar
  20. 20.
    Frijda, N.H.: The Emotions. Studies in Emotion and Social Interaction. Cambridge University Press, Cambridge (1987)Google Scholar
  21. 21.
    Goldman, A.I.: Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford Univ. Press, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Hedström, P., Sandell, R., Stern, C.: Mesolevel Networks and the Diffusion of Social Movements: The Case of the Swedish Social Democratic Party. American J. of Sociology 106(1), 145–172 (2000)CrossRefGoogle Scholar
  23. 23.
    Iacoboni, M.: Mirroring People. Farrar, Straus & Giroux, New York (2008)Google Scholar
  24. 24.
    Iacoboni, M.: Understanding others: imitation, language, empathy. In: Hurley, S., Chater, N. (eds.) Perspectives on Imitation: from Cognitive Neuroscience to Social Science, vol. 1, pp. 77–100. MIT Press, Cambridge (2005)Google Scholar
  25. 25.
    Memon, Z.A., Treur, J.: On the Reciprocal Interaction Between Believing and Feeling: an Adaptive Agent Modelling Perspective. Cognitive Neurodynamics Journal 4, 377–394 (2010), doi:10.1007/s11571-010-9136-7; Preliminary shorter version in Zhong, N., et al. (eds.): BI 2009. LNCS(LNAI), vol. 5819, pp. 13–24. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Nabi, R.L.: Anger, fear, uncertainty, and attitudes: A test of the cognitive-functional model. Communication Monographs 69, 204–216 (2002)CrossRefGoogle Scholar
  27. 27.
    Nabi, R.L.: Exploring the framing effects of emotion: Do discrete emotions differentiallly influence information accessibility, information seeking, and policy preference? Communication Research 30(224), 224–247 (2003)CrossRefGoogle Scholar
  28. 28.
    Pan, X., Han, C., Dauber, K., Law, K.: Human and social behaviour in computational modeling and analysis of egress. Automation in Construction 15(4), 448–461 (2006)CrossRefGoogle Scholar
  29. 29.
    Patrick, C., Cuthbert, B., Lang, P.: Emotion in the Criminal Psychopath: Fear Image Processing. Journal of Abnormal Psychology 103(3), 523–534 (1994)CrossRefGoogle Scholar
  30. 30.
    Pineda, J.A. (ed.): Mirror Neuron Systems: the Role of Mirroring Processes in Social Cognition. Humana Press Inc., Totowa (2009)Google Scholar
  31. 31.
    Rizzolatti, G.: The mirror-neuron system and imitation. In: Hurley, S., Chater, N. (eds.) Perspectives on Imitation: from Cognitive Neuroscience to Social Science, vol. 1, pp. 55–76. MIT Press, Cambridge (2005)Google Scholar
  32. 32.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  33. 33.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Neuro-physiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001)CrossRefGoogle Scholar
  34. 34.
    Rizzolatti, G., Sinigaglia, C.: Mirrors in the Brain: How Our Minds Share Actions and Emotions. Oxford University Press, Oxford (2008)Google Scholar
  35. 35.
    Rogers, E.: Diffusion of Innovations. Free Press, New York (1983)Google Scholar
  36. 36.
    Soui, M., Ghédira, K., Hammadi, S.: Proposal of Personalized Multimodal Information Diffusion System. In: Proc. of the 1st Intern. Conf. on ICT & Accessibility, ICTA 2007, pp. 219–224 (2007)Google Scholar
  37. 37.
    Witte, K., Allen, M.: A Meta-Analysis of Fear Appeals: Implications for Effective Public Health Campaigns. Health Educ. Behav. 27(5), 591–615 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mark Hoogendoorn
    • 1
  • Jan Treur
    • 1
  • C. Natalie van der Wal
    • 1
  • Arlette van Wissen
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations