Elder Care’s Fall Detection System

  • Filipe Felisberto
  • Nuno Moreira
  • Isabel Marcelino
  • Florentino Fdez-Riverola
  • António Pereira
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 92)

Abstract

With the increase of the elderly population, new challenges to enable a healthy and dignified life for the elderly arise. One of these challenges, comes from a very serious problem to which the elderly population is subject: falls when they are alone. This article intends to present the initial study performed, and the resulting architecture of a complete system, that in conjunction with the rest of the Elder Care project, will enable the rapid detection of falls and sending of requests for help, that may well save lives.

Keywords

fall detection body area network health monitoring aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Bourke, A., Lyons, G.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait and Posture 26(2), 194–199 (2007)CrossRefGoogle Scholar
  4. 4.
    Bourke, A., Lyons, G.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics 30(1), 84–90 (2008)CrossRefGoogle Scholar
  5. 5.
    Bourke, A.K., O’Donovan, K.J., Nelson, J., OLaighin, G.M.: Fall-detection through vertical velocity thresholding using a tri-axial accelerometer characterized using an optical motion-capture system, pp. 2832–2835 (2008)Google Scholar
  6. 6.
    Thorn, G., Adams, R., Braunwald, E., Isselbacher, K., Petersdorf, R.: Harrison: Principios de medicina interna, 5a edn. McGraw Hill Interamericana, Mexico (1981)Google Scholar
  7. 7.
    Giannakouris, K.: Ageing characterises the demographic perspectives of the European societies. Eurostat: Statistics in Focus. Retrieved 9, 8–72 (2009)Google Scholar
  8. 8.
    Karulf, E.: Body area networks (ban). pdf (2008), http://www.cse.wustl.edu/~jain/cse574-08/ftp/ban.pdf
  9. 9.
    Lord, C., Colvin, D.: Falls in the elderly: Detection and assessment, pp. 1938–1939 (1991)Google Scholar
  10. 10.
    Marcelino, I., Barroso, J., Cruz, J.B., Pereira, A.: Elder care architecture. In: Proceedings of the 2008 Third International Conference on Systems and Networks Communications, pp. 349–354 (2008)Google Scholar
  11. 11.
    Nachman, L., Huang, J., Shahabdeen, J., Adler, R., Kling, R.: Imote2: Serious Computation at the Edge, pp. 1118–1123 (2008)Google Scholar
  12. 12.
    Todd, C., Skelton, D.: What are the main risk factors for falls among older people and what are the most effective interventions to prevent these falls? Tech. rep., WHO Regional Office for Europe (Health Evidence Network report) (2004)Google Scholar
  13. 13.
    Williams, G., Doughty, K., Cameron, K., Bradley, D.: A smart fall and activity monitor for telecare applications 3, 1151–1154 (1998)Google Scholar
  14. 14.
    Wu, G.: Distinguishing fall activities from normal activities by velocity characteristics. Journal of Biomechanics 33, 1497–1500 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Filipe Felisberto
    • 1
  • Nuno Moreira
    • 1
  • Isabel Marcelino
    • 1
    • 2
  • Florentino Fdez-Riverola
    • 3
  • António Pereira
    • 1
    • 2
  1. 1.School of Technology and Management, Computer Science and Communications Research CentrePolytechnic Institute of LeiriaLeiriaPortugal
  2. 2.INOV INESC INOVAÇÄO Instituto de Novas TecnologiasLeiriaPortugal
  3. 3.ESEI: Escuela Superior de Ingeniería InformáticaUniversity of Vigo, Edificio PolitécnicoOurenseSpain

Personalised recommendations