Dynamic Assignation of Roles and Tasks in Virtual Organizations of Agents

  • Carolina Zato
  • Ana de Luis
  • Juan F. De Paz
  • Vivian F. López
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 91)


Nowadays, a common problem that affects the workflow and the results of an entity is the planning and distribution of tasks. Doing this manually implies anticipate workloads and employee characteristics, which is inefficient and almost uncalculated in high dynamic environments. In this paper, a model that generates a planning of tasks, minimizing the resources necessary for its accomplishment and obtains the maximum benefits is presented. Within this proposal, genetic algorithms, queuing theory, and CBR are used in different stages to obtain an efficient distribution. To test the system, the chosen case study that fits the scenario, is the e-Government where an elevated number of tasks must be solved in a precise term using the minimal resources.


multiagent systems virtual organizations queuing theory genetic algorithm scheduling e-Government 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trippi, R.R., Ash, A.W., Ravenis, J.V.: A mathematical approach to large scale personnel assignment. Computers & Operations Research 1(1), 111–117 (1974)CrossRefGoogle Scholar
  2. 2.
    Zülch, G., Rottinger, S., Vollstedt, T.: A simulation approach for planning and reassigning of personnel in manufacturing. International Journal of Production Economics 90, 265–277 (2004)CrossRefGoogle Scholar
  3. 3.
    Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in Cooperative Distributed Problem Solving. IEEE Transactions on Knowledge and Data Engineering 1(1), 63–83 (1989)CrossRefGoogle Scholar
  4. 4.
    Shin, K., Corder, S.: Implementing the ford-fulkerson labeling algorithm with fixed-order scanning. Computers & Operations Research 19(8), 783–787 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Esteva, M., Rodríguez, J., Sierra, C., Garcia, P., Arcos, J.: On the formal specific ations of electronic institutions. In: Dignum, F.P.M., Cortés, U. (eds.) AMEC 2000. LNCS (LNAI), vol. 2003, pp. 126–147. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  7. 7.
    Corchado, E., Assumpcio, M., MBorrajo, M.L.: A maximum likelihood Hebbian learning-based method to an agent-based architecture. Int. Journal of Computer Mathematics. 86(10-11), 1760–1768 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Martín, Q.: Investigación Operativa. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  9. 9.
    Menasce, D.A.: Trade-offs in designing Web clusters. IEEE Internet Computing 6(5), 76–80 (2002)CrossRefGoogle Scholar
  10. 10.
    Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Scientific Programming 14(3), 217–230 (2006)Google Scholar
  11. 11.
    Rodríguez, P.: Discusión y Análisis de la metaheurística SN. Depto. Investigación Operativa, InCo, FI, UdelaR. Reporte Tecnico 03-02 (2003)Google Scholar
  12. 12.
    Seda, M.: Mathematical Models of Flow Shop and Job Scheduling Problems. Worl Academy of Science, Engineering and Technology (31), 122–127 (2007)Google Scholar
  13. 13.
    Wan, S., Yang, F., Izquierdo, E.: Lagrange multiplier selection in wavelet-based scalable video coding for quality scalability. Signal Processing: Image Communication 24(9), 730–739 (2009)CrossRefGoogle Scholar
  14. 14.
    Pacheco, J.A., Casado, S.: Estudio Comparativo de Diferentes Metaheurísticas para la Resolución del Labor Scheduling Problem. Estudios de Economia Aplicada 21(3), 537–557 (2003)Google Scholar
  15. 15.
    Shi, C., Lu, J., Zhang, G.: An extended Kuhn-Tucker approach for linear bilevel programming. Applied Mathematics and Computation 162(1), 51–63 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Andres, C., Miralles, C., Pastor, R.: Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. European Journal of Operational Research 187(3), 1212–1223 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kim, K.H., Park, Y.: A crane scheduling method for port container terminals. European Journal of Operational Research 156(3), 752–768 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Porto, S., Kitajima, J.P., Ribeiro, C.: Performance evaluation of a parallel tabu search task scheduling algorithm. Parallel Computing 26(1), 73–90 (1996); Steinhofel, K., Albrecht, A., Wong, C.K.: Two simulated annealing-based heuristics for the job shop scheduling problem. European Journal of Operational Research 118(3), 524–548 (1999) Google Scholar
  19. 19.
    Taillard, E.: Parallel Taboo Search Technique for the Job shop Scheduling Problem. Journal on Computing Science 6, 108–117 (1994)zbMATHGoogle Scholar
  20. 20.
    Kolonko, M.: Some new results on simulated annealing applied to the job shop scheduling problem. European Journal of Operational Research 113(1), 123–136 (2009)CrossRefGoogle Scholar
  21. 21.
    Kabadi, S., Punnen, A.: A strongly polynomial simplex method for the linear fractional assignment problem. Operations Research Letters 36(4), 402–407 (2008)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carolina Zato
    • 1
  • Ana de Luis
    • 1
  • Juan F. De Paz
    • 1
  • Vivian F. López
    • 1
  1. 1.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain

Personalised recommendations