Secure Communication of Local States in Interpreted Systems

  • Michael Albert
  • Andrés Cordón-Franco
  • Hans van Ditmarsch
  • David Fernández-Duque
  • Joost J. Joosten
  • Fernando Soler-Toscano
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 91)

Abstract

Given an interpreted system, we investigate ways for two agents to communicate secrets by public announcements. For card deals, the problem to keep all of your cards a secret (i) can be distinguished from the problem to keep some of your cards a secret (ii). For (i): we characterize a novel class of protocols consisting of two announcements, for the case where two agents both hold n cards and the third agent a single card; the communicating agents announce the sum of their cards modulo 2n + 1. For (ii): we show that the problem to keep at least one of your cards a secret is equivalent to the problem to keep your local state (hand of cards) a secret; we provide a large class of card deals for which exchange of secrets is possible; and we give an example for which there is no protocol of less than three announcements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, M., Aldred, R., Atkinson, M., van Ditmarsch, H., Handley, C.: Safe communication for card players by combinatorial designs for two-step protocols. Australasian Journal of Combinatorics 33, 33–46 (2005)MATHMathSciNetGoogle Scholar
  2. 2.
    van Ditmarsch, H.: The Russian cards problem. Studia Logica 75, 31–62 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Erdös, P., Heilbronn, H.: On the addition of residue classes modulo p. Acta Arithmetica 9, 149–159 (1964)MATHMathSciNetGoogle Scholar
  4. 4.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  5. 5.
    Fischer, M., Wright, R.: Multiparty secret key exchange using a random deal of cards. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 141–155. Springer, Heidelberg (1992)Google Scholar
  6. 6.
    Fischer, M., Wright, R.: Bounds on secret key exchange using a random deal of cards. Journal of Cryptology 9(2), 71–99 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Kirkman, T.: On a problem in combinations. Camb. and Dublin Math. J. 2, 191–204 (1847)Google Scholar
  8. 8.
    Makarychev, K., Makarychev, Y.: The importance of being formal. Mathematical Intelligencer 23(1), 41–42 (2001)CrossRefGoogle Scholar
  9. 9.
    da Silva, J.D., Hamidourne, Y.: Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc. 26, 140–146 (1994)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Stinson, D.: Combinatorial Designs – Constructions and Analysis. Springer, Heidelberg (2004)MATHGoogle Scholar
  11. 11.
    Wang, Y.: Epistemic modelling and protocol dynamics. Ph.D. thesis, University of Amsterdam, ILLC Dissertation Series DS-2010-06 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Albert
    • 1
  • Andrés Cordón-Franco
    • 2
  • Hans van Ditmarsch
    • 2
  • David Fernández-Duque
    • 2
  • Joost J. Joosten
    • 2
  • Fernando Soler-Toscano
    • 2
  1. 1.University of OtagoNew Zealand
  2. 2.University of SevillaSpain

Personalised recommendations