A Multi-Agent System for Remote Eldercare

  • Boštjan Kaluža
  • Erik Dovgan
  • Violeta Mirchevska
  • Božidara Cvetković
  • Mitja Luštrek
  • Matjaž Gams
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 90)

Abstract

This paper presents a case study in which a multi-agent system for care of the elderly people living at home alone is applied in order to prolong their independence. The system consists of several agents organized in groups providing robust and flexible monitoring, calling for help in the case of an emergency and issuing warnings if unusual behavior is detected. The first results and demonstrations show promising performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AlertOne Services, Inc. iLifeTM Fall Detection Sensor, http://www.falldetection.com
  2. 2.
    Bourke, A.K., Lyons, G.M.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics 30(1), 84–90 (2008)CrossRefGoogle Scholar
  3. 3.
    Camarinha-Matos, L.M., Afsarmanesh, H.: A multi-agent based infrastructure to support virtual communities in elderly care. Int. Jour. of Networking and Virtual Organisations 2(3), 246–266 (2004)CrossRefGoogle Scholar
  4. 4.
    Cesta, Pecora, F.: Integrating Intelligent Systems for Elder Care in RoboCare. In: Mann, W.C., Helal, A. (eds.) Promoting Independence for Older Persons with Disabilities, pp. 65–73. IOS Press, Amsterdam (2006)Google Scholar
  5. 5.
    Confidence (April 23, 2010), http://www.confidence-eu.org
  6. 6.
    Doughty, K., Lewis, R., McIntosh, A.: The design of a practical and reliable fall detector for community and institutional telecare. Journal of Telemedicine and Telecare 6, 150–154 (2000)CrossRefGoogle Scholar
  7. 7.
    Fuller, G.F.: Falls in the elderly. American Family Physician 61(7), 2159–2168, 2173–2174 (2000)Google Scholar
  8. 8.
    Isern, D., Sanchez, D., Moreno, A.: Agents applied in health care: A review. International Journal of Medical Informatics 79(3), 145–166 (2010)CrossRefGoogle Scholar
  9. 9.
    Kaluža, B., Gams, M.: An Approach to Analysis of Daily Living Dynamics. In: Proceedings of the WCECS 2010, ICMLDA 2010, San Francisco, CA, vol. 1, pp. 485–490 (October 2010)Google Scholar
  10. 10.
    Kaluža, B., Mirchevska, V., Dovgan, E., Lustrek, M., Gams, M.: An Agent-based Approach to Care in Independent Living. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp. 177–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kangas, M., Konttila, A., Winblad, I., Jamsa, T.: Determination of simple thresholds for accelerometry-based parameters for fall detection. In: Proceedings of the 29th Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1367–1370 (2007)Google Scholar
  12. 12.
    Luštrek, M., Kaluža, B.: Fall detection and activity recognition with machine learning. Informatica 33(2), 197–204 (2009)Google Scholar
  13. 13.
    Luštrek, M., Kaluža, B., Dovgan, E., Pogorelc, B., Gams, M.: Behavior analysis based on coordinates of body tags. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 14–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Mirchevska, V., Luštrek, M., Gams, M.: Combining machine learning and expert knowledge for classifying human posture. In: Proceedings of the Eighteenth International Electrotechnical and Computer Science Conference, vol. B, pp. 183–186 (2009)Google Scholar
  15. 15.
    Pan, J.-I., Yung, C.-J., Liang, C.-C., Lai, L.-F.: An intelligent homecare emergency service system for elder falling. In: World Congress on Medical Physics and Biomedical Engineering 2006, pp. 424–428. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Rubenstein, L.Z., Josephson, K.R., Robbins, A.S.: Fall in the Nursing Home. Ann. Intern. Med. 121, 442–451 (1994)Google Scholar
  17. 17.
    Ubisense (April 23, 2010), http://www.ubisense.net
  18. 18.
    Zenio, Zenio Fall Detector, http://www.zenio.be/product/8.html
  19. 19.
    Zhang, T., Wang, J., Liu, J.: Fall detection by wearable sensor and one-class SVM algorithm. Lecture Notes in Control and Information Science, pp. 858–863 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Boštjan Kaluža
    • 1
  • Erik Dovgan
    • 1
  • Violeta Mirchevska
    • 2
  • Božidara Cvetković
    • 1
  • Mitja Luštrek
    • 1
  • Matjaž Gams
    • 1
  1. 1.Department of Intelligent SystemsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Result d.o.o.LjubljanaSlovenia

Personalised recommendations