A Multiagent System For Web-Based Risk Management in Small and Medium Business

  • Juan F. De Paz
  • Javier Bajo
  • M. Lourdes Borrajo
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 89)


Business Intelligence has gained relevance during the last years to improve business decision making. However, there is still a growing need of developing innovative tools that can help small to medium sized enterprises to predict risky situations and manage inefficient activities. This article present a multiagent system especially conceived to detect risky situations and provide recommendations to the internal auditors of SMEs. The core of the multiagent system is a type of agent with advanced capacities for reasoning to make predictions based on previous experiences. This agent type is used to implement an evaluator agent specialized in detect risky situations and an advisor agent aimed at providing decision support facilities. Both agents incorporate innovative techniques in the stages of the CBR system. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.


Hybrid neural intelligent system CBR MAS Business Intelligence business risk prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avogadri, R., Valentini, G.: Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine 45(2-3), 173–183 (2009)CrossRefGoogle Scholar
  2. 2.
    Bajo, J., De Paz, Y., De Paz, J.F., Corchado, J.M.: Integrating Case Planning and RPTW Neuronal Networks to Construct an Intelligent Environment for Health Care. Expert Systems with Applications 36(3), 5844–5858 (2009)CrossRefGoogle Scholar
  3. 3.
    Baladandayuthapani, V., Ray, S., Mallick, B.K.: Bayesian Methods for DNA Microarray Data Analysis. Handbook of Statistics 25(1), 713–742 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bianchia, D., Calogero, R., Tirozzi, B.: Kohonen neural networks and genetic classification. Mathematical and Computer Modelling 45(1-2), 34–60 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Borrajo, M.L., Corchado, J.M., Yáñez, J.C., Fdez-Riverola, F., Díaz, F.: Autonomous internal control system for small to medium firms. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 106–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Calderon, T.G., Cheh, J.J.: A roadmap for future neural networks research in auditing and risk assessment. International Journal of Accounting Information Systems 3(4), 203–236 (2002)CrossRefGoogle Scholar
  7. 7.
    Chi-Jie, L., Tian-Shyug, L., Chih-Chou, C.: Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems 47(2), 115–125 (2009)CrossRefGoogle Scholar
  8. 8.
    Colbert, J.L.: Risk. Internal Auditor, 36–40 (1995)Google Scholar
  9. 9.
    Committee of Sponsoring Organizations of the Treadway Commission (COSO), Guidance on Monitoring Internal Control Systems (COSO’s Monitoring Guidance) (2009)Google Scholar
  10. 10.
    Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-based Reasoning Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  11. 11.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yanez, C.Y.: Neuro-symbolic system for business internal control. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp. 1–10. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Dellaert, F.: The Expectation Maximization Algorithm, Technical Report. Georgia Institute of Technology (2002)Google Scholar
  13. 13.
    Ding, Y., Song, X., Zen, Y.: Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications: An International Journal 34(4), 3081–3089 (2008)CrossRefGoogle Scholar
  14. 14.
    Huang, S., Tsai, C., Yen, D.C., Cheng, Y.: A hybrid financial analysis model for business failure prediction. Expert Systems with Applications: An International Journal 35(3), 1034–1040 (2008)CrossRefGoogle Scholar
  15. 15.
    Khashman, A.: A neural network model for credit risk evaluation. International Journal of Neural Systems 19(4), 285–294 (2009)CrossRefGoogle Scholar
  16. 16.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  17. 17.
    Li, H., Sun, J.: Ranking-order case-based reasoning for financial distress prediction. Knowledge-Based Systems 21(8), 868–878 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, H., Sun, J.: Gaussian case-based reasoning for business failure prediction with empirical data in China. Information Sciences 179(1-2), 89–108 (2009)CrossRefGoogle Scholar
  19. 19.
    Li, H., Sun, J.: On performance of case-based reasoning in Chinese business failure prediction from sensitivity, specificity, positive and negative values. Applied Soft Computing (in Press)Google Scholar
  20. 20.
    Li, H., Huang, H.B., Sun, J.: On sensitivity of case-based reasoning to optimal feature subsets in business failure prediction. Expert Systems with Applications (in Press)Google Scholar
  21. 21.
    Li, H., Liang, Y., Xu, Q.: Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems 95(2), 188–198 (2009)CrossRefGoogle Scholar
  22. 22.
    Lin, R., Wang, Y., Wu, C., Chuang, C.: Developing a business failure prediction model via RST, GRA and CBR. Expert Systems with Applications 36(2), 1593–1600 (2009)CrossRefGoogle Scholar
  23. 23.
    Ramamoorti, S., Bailey, A.D., Traver, R.O.: Risk assessment in internal auditing: a neural network approach. Int. J. IntellSyst. Account Finance Manage (8), 159–180 (1999)Google Scholar
  24. 24.
    Risk and Insurance Management Society, Inc., Financial Crisis- A Wake up call for Enterprise Risk Management (2008)Google Scholar
  25. 25.
    Sawa, T., Ohno-Machado, L.: A neural network based similarity index for clustering DNA microarray data. Computers in Biology and Medicine 33(1), 1–15 (2003)CrossRefGoogle Scholar
  26. 26.
    Sun, J., Li, H.: Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems 21(1), 1–5 (2008a)CrossRefGoogle Scholar
  27. 27.
    Sun, J., Li, H.: Listed companies’ financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications 35(3), 818–827 (2008b)CrossRefGoogle Scholar
  28. 28.
    Sun, J., Li, H.: Financial distress early warning based on group decision making. Computers & Operations Research 36(3), 885–906 (2009a)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sun, J., Li, H.: Financial distress prediction based on serial combination of multiple classifiers. Expert Systems with Applications 36(4), 8659–8666 (2009b)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juan F. De Paz
    • 3
  • Javier Bajo
    • 1
  • M. Lourdes Borrajo
    • 2
  • Juan M. Corchado
    • 3
  1. 1.Facultad de Informática.Universidad Pontificia de SalamancaSalamancaSpain
  2. 2.Dept. InformáticaUniversity of Vigo, Edificio PolitécnicoOurenseSpain
  3. 3.Departamento Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations