An Efficient Motif Search Algorithm Based on a Minimal Forbidden Patterns Approach

  • Tarek El Falah
  • Thierry Lecroq
  • Mourad Elloumi
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 93)


One of the problems arising in the analysis of biological sequences is the discovery of sequence similarity by finding common motifs. Several versions of the motif finding problem have been proposed for dealing with this problem and for each version, numerous algorithms have been developed.

In this paper, we propose an exact algorithm, called SMS-H-Forbid to solve the Simple Motif Problem (SMP). SMS-H-Forbid is based on clever techniques reducing the number of patterns to be searched for. These techniques are fundamentally different from the ones employed in the literature making SMP more practical.


algorithms strings motifs complexities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Chin, F.Y.L., Leung, H.C.M.: Voting algorithm for discovering long motifs. In: Proceedings of Asia-Pacific Bioinformatics Conference, pp. 261–272 (2005)Google Scholar
  3. 3.
    El Falah, T., Elloumi, M., Lecroq, T.: Motif finding algorithms in biological sequences. In: Algorithms Computational Molecular Biology: Techniques, Approaches and Applications, Wiley Book Series on Bioinformatics: Computational Techniques and Ingeneering, pp. 387–398. Wiley-Blackwell, John Wuley and Sons Ltd., New Jersey, USA (2011)Google Scholar
  4. 4.
    El Falah, T., Lecroq, T., Elloumi, M.: SMS-Forbid: an efficient algorithm for simple motif problem. In: Proceedings of the ISCA 2nd International Conference on Bioinformatics and Computational Biology, Honolulu, Hawai, pp. 121–126 (2010)Google Scholar
  5. 5.
    Floratos, A., Rigoutsos, I.: On the time complexity of the teiresias algorithm. Technical report, Research Report RC 21161 (94582). IBM T.J. Watson Research Center (1998)Google Scholar
  6. 6.
    Leung, H.C.M., Chin, F.Y.L.: An efficient algorithm for the extended (l,d)-motif problem, with unknown number of binding sites. In: Proceedings of the Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2005), pp. 11–18 (2005)Google Scholar
  7. 7.
    Price, A., Ramabhadran, S., Pevzner, P.A.: Finding subtle motifs by branching from sample strings. Bioinformatics 1(1), 1–7 (2003)Google Scholar
  8. 8.
    Rajasekaran, S., Balla, S., Huang, C.-H., Thapar, V., Gryk, M., Maciejewski, M., Schiller, M.: High-performance exact algorithms for motif search. Journal of Clinical Monitoring and Computing 19, 319–328 (2005)CrossRefGoogle Scholar
  9. 9.
    Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 111–127. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Styczynski, M.P., Jensen, K.L., Rigoutsos, I., Stephanopoulos, G.N.: An extension and novel solution to the (l,d)-motif challenge problem. Genome Informatics 15(2), 63–71 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tarek El Falah
    • 1
    • 2
  • Thierry Lecroq
    • 2
  • Mourad Elloumi
    • 1
  1. 1.Research Unit of Technologies of Information and CommunicationHigher School of Sciences and Technologies of TunisTunisTunisia
  2. 2.University of RouenLITISFrance

Personalised recommendations