Content-Based Filtering in On-Line Social Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6549)


This paper proposes a system enforcing content-based message filtering for On-line Social Networks (OSNs). The system allows OSN users to have a direct control on the messages posted on their walls. This is achieved through a flexible rule-based system, that allows a user to customize the filtering criteria to be applied to their walls, and a Machine Learning based soft classifier automatically labelling messages in support of content-based filtering.


On-line Social Networks Short Text Classification Text Filtering Filtering Policies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, B., Villegas, W., Maheswaran, M.: A trust based approach for protecting user data in social networks. In: Proceedings of the 2007 Conference of the Center for Advanced Studies on Collaborative Research, pp. 288–293. ACM, New York (2007)CrossRefGoogle Scholar
  2. 2.
    Amati, G., Crestani, F.: Probabilistic learning for selective dissemination of information. Information Processing and Management 35(5), 633–654 (1999)CrossRefGoogle Scholar
  3. 3.
    Boykin, P.O., Roychowdhury, V.P.: Leveraging social networks to fight spam. IEEE Computer Magazine 38, 61–67 (2005)CrossRefGoogle Scholar
  4. 4.
    Carminati, B., Ferrari, E.: Access control and privacy in web-based social networks. International Journal of Web Information Systems 4, 395–415 (2008)CrossRefGoogle Scholar
  5. 5.
    Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social networks. ACM Trans. Inf. Syst. Secur. 13(1), 1–38 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Carullo, M., Binaghi, E., Gallo, I.: An online document clustering technique for short web contents. Pattern Recognition Letters 30, 870–876 (2009)CrossRefGoogle Scholar
  7. 7.
    Churcharoenkrung, N., Kim, Y.S., Kang, B.H.: Dynamic web content filtering based on user’s knowledge. In: International Conference on Information Technology: Coding and Computing, vol. 1, pp. 184–188 (2005)Google Scholar
  8. 8.
    Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: WWW 2010: Proceedings of the 19th International Conference on World Wide Web, pp. 351–360. ACM, New York (2010)Google Scholar
  9. 9.
    Fong, P.W.L., Anwar, M.M., Zhao, Z.: A privacy preservation model for facebook-style social network systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 303–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Frakes, W., Baeza-Yates, R. (eds.): Information Retrieval: Data Structures & Algorithms. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  11. 11.
    Golbeck, J.A.: Computing and Applying Trust in Web-based Social Networks. Ph.D. thesis, Graduate School of the University of Maryland, College Park (2005)Google Scholar
  12. 12.
    Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kim, Y.H., Hahn, S.Y., Zhang, B.T.: Text filtering by boosting naive bayes classifiers. In: SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 168–175. ACM, New York (2000)Google Scholar
  14. 14.
    Landis, J.R., Koch, G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)CrossRefzbMATHGoogle Scholar
  15. 15.
    Laudanna, A., Thornton, A., Brown, G., Burani, C., Marconi, L.: Un corpus dell’italiano scritto contemporaneo dalla parte del ricevente. III Giornate Internazionali di Analisi Statistica dei Dati Testuali 1, 103–109 (1995)Google Scholar
  16. 16.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research (2004)Google Scholar
  17. 17.
    Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    Moody, J., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)CrossRefGoogle Scholar
  19. 19.
    Pérez-Alcázar, J.d.J., Calderón-Benavides, M.L., González-Caro, C.N.: Towards an information filtering system in the web integrating collaborative and content based techniques. In: LA-WEB 2003: Proceedings of the First Conference on Latin American Web Congress, p. 222. IEEE Computer Society, Washington (2003)Google Scholar
  20. 20.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  21. 21.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  22. 22.
    Strater, K., Richter, H.: Examining privacy and disclosure in a social networking community. In: SOUPS 2007: Proceedings of the 3rd Symposium on Usable Privacy and Security, pp. 157–158. ACM, New York (2007)Google Scholar
  23. 23.
    Tootoonchian, A., Gollu, K.K., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: social access control for web 2.0. In: WOSP 2008: Proceedings of the First Workshop on Online Social Networks, pp. 43–48. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Computer Science and CommunicationUniversity of InsubriaVareseItaly

Personalised recommendations