A Concentration-Based Artificial Immune Network for Multi-objective Optimization

  • Guilherme Palermo Coelho
  • Fernando J. Von Zuben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6576)

Abstract

Until recently, the main focus of researchers that develop algorithms for evolutionary multi-objective optimization has been the creation of mechanisms capable of obtaining sets of solutions that are as close as possible to the true Pareto front of the problem and also as diverse as possible in the objective space, to properly cover such front. However, an adequate maintenance of diversity in the decision space is also important, to efficiently solve several classes of problems and even to facilitate the post-optimization decision making process. This aspect has been widely studied in evolutionary single-objective optimization, what led to the development of several diversity maintenance techniques. Among them, the recently proposed concentration-based artificial immune network (cob-aiNet), which is capable of self-regulating the population size, presented promising results in multimodal problems. So, it is extended here to deal with multi-objective problems that require a proper maintenance of diversity in the decision space.

Keywords

artificial immune systems multi-objective optimization diversity in decision space immune networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bersini, H.: Revisiting idiotypic immune networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 164–174. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Burnet, F.M.: Clonal selection and after. In: Bell, G.I., Perelson, A.S., Pimgley Jr., G.H. (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker Inc., New York (1978)Google Scholar
  3. 3.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: a New Computational Intelligence Approach. Springer, Heidelberg (2002)MATHGoogle Scholar
  4. 4.
    Chan, K.P., Ray, T.: An evolutionary algorithm to maintain diversity in the parametric and the objective space. In: Proc. of the 2005 Intl. Conference on Computational Intelligence, Robotics and Autonomous Systems, CIRAS 2005 (2005)Google Scholar
  5. 5.
    Coelho, G.P., Von Zuben, F.J.: A concentration-based artificial immune network for continuous optimization. In: Proc. of the 2010 IEEE International Conference on Evolutionary Computation, CEC 2010, pp. 108–115 (2010)Google Scholar
  6. 6.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)MATHGoogle Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Tiwari, S.: Omni-optimizer: A procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Emmerich, M.T.M., Deutz, A.H.: Test problems based on Lamé superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    de França, F.O., Coelho, G.P., Castro, P.A.D., Von Zuben, F.J.: Conceptual and practical aspects of the aiNet family of algorithms. Intl. Journal of Natural Computing Research 1(1), 1–35 (2010)CrossRefGoogle Scholar
  12. 12.
    Freschi, F., Repetto, M.: VIS: An artificial immune network for multi-objective optimization. Engineering Optimization 38(8), 975–996 (2006)CrossRefGoogle Scholar
  13. 13.
    Hart, E., Bersini, H., Santos, F.C.: How affinity influences tolerance in an idiotypic network. Journal of Theoretical Biology 249(3), 422–436 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jerne, N.K.: Towards a network theory of the immune system. Annales d’Immunologie 125(1-2), 373–389 (1974)Google Scholar
  15. 15.
    Moore, D.S., McCabe, G.P., Craig, B.: Introduction to the Practice of Statistics, 6th edn. W.H. Freeman, New York (2007)Google Scholar
  16. 16.
    Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T., Beyer, H.G., Burke, E., Merelo-Guervós, J., Whitley, L., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 513–522. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)CrossRefGoogle Scholar
  20. 20.
    Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolutionary Computation 11(2), 151–167 (2003)CrossRefGoogle Scholar
  21. 21.
    Unrich, T., Bader, J., Zitzler, E.: Integrating decision space diversity into hypervolume-based multiobjective search. In: Proc. of the 2010 Genetic and Evolutionary Computation Conference, GECCO 2010 (2010)Google Scholar
  22. 22.
    Yildiz, A.R.: A new design optimization framework based on immune algorithm and Taguchi’s method. Computers in Industry 60(8), 613–620 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation 13(5), 1167–1189 (2009)CrossRefGoogle Scholar
  24. 24.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Tech. rep., ETH, TIK, Zurich, Switzerland (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guilherme Palermo Coelho
    • 1
  • Fernando J. Von Zuben
    • 1
  1. 1.Laboratory of Bioinformatics and Bioinspired Computing (LBiC), Department of Computer Engineering and Industrial Automation (DCA), School of Electrical and Computer Engineering (FEEC)University of Campinas (Unicamp)CampinasBrazil

Personalised recommendations