Some Morphological Operators on Simplicial Complex Spaces

  • Fábio Dias
  • Jean Cousty
  • Laurent Najman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


In this work, we propose a framework that allows to build morphological operators for processing and filtering objects defined on (abstract) simplicial complex spaces. We illustrate with applications to mesh and image processing, for which, on the provided examples, the proposed approach outperforms the classical one.


Simplicial Complex Adjoint Operator Mathematical Morphology Cubical Complex Graph Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 31(4), 637–648 (2009)CrossRefGoogle Scholar
  2. 2.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 397–410. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Grady, L.J., Polimeni, J.R.: Discrete Calculus. Springer, Heidelberg (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Heijmans, H., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203. Marcel Dekker, New York (1992)Google Scholar
  6. 6.
    Jänich, K.: Topology. Springer, Heidelberg (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. CVGIP 46(2), 141–161 (1989)Google Scholar
  8. 8.
    Loménie, N., Stamon, G.: Morphological mesh filtering and α-objects. Pattern Recognition Letters 29(10), 1571–1579 (2008)CrossRefGoogle Scholar
  9. 9.
    Meyer, F., Angulo, J.: Micro-viscous morphological operators. In: ISMM 2007, pp. 165–176 (2007)Google Scholar
  10. 10.
    Philipp-Foliguet, S., Jordan, M., Najman, L., Cousty, J.: Artwork 3D Model Database Indexing and Classification. PR 44(3), 588–597 (2011)zbMATHGoogle Scholar
  11. 11.
    Poincaré, H.: Analysis situs. Journal de l’École Polytechniquee 2(1), 1–178 (1895)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ronse, C., Serra, J.: Algebric foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 35–79. ISTE-Wiley, Chichester (2010)Google Scholar
  13. 13.
    Ta, V.T., Elmoataz, A., Lezoray, O.: Partial difference equations on graphs for mathematical morphology operators over images and manifolds. In: Procs. of ICIP 2008, pp. 801–804 (12-15, 2008)Google Scholar
  14. 14.
    Vincent, L.: Graphs and mathematical morphology. Signal Processing 16, 365–388 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fábio Dias
    • 1
  • Jean Cousty
    • 1
  • Laurent Najman
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI, ESIEEUniversité Paris-EstFrance

Personalised recommendations