Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results

  • Isabelle Bloch
  • Alain Bretto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


In this article we introduce mathematical morphology on hypergraphs. We first define lattice structures and then mathematical morphology operators on hypergraphs. We show some relations between these operators and the hypergraph structure, considering in particular duality and similarity aspects.


  1. 1.
    Berge, C.: Hypergraphs. Elsevier Science Publisher, The Netherlands (1989)zbMATHGoogle Scholar
  2. 2.
    Bloch, I.: On Links between Mathematical Morphology and Rough Sets. Pattern Recognition 33(9), 1487–1496 (2000)CrossRefGoogle Scholar
  3. 3.
    Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 13, pp. 857–947. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bretto, A., Azema, J., Cherifi, H., Laget, B.: Combinatorics and image processing. CVGIP: Graphical Model and Image Processing 59(5), 265–277 (1997)Google Scholar
  5. 5.
    Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. Pattern Recognition 35(3), 651–658 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)zbMATHGoogle Scholar
  8. 8.
    Heijmans, H.J.A.M., Ronse, C.: The Algebraic Basis of Mathematical Morphology – Part I: Dilations and Erosions. Computer Vision, Graphics and Image Processing 50, 245–295 (1990)CrossRefzbMATHGoogle Scholar
  9. 9.
    Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5) (2009)Google Scholar
  10. 10.
    Meyer, F., Stawiaski, J.: Morphology on graphs and minimum spanning trees. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 161–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ronse, C., Heijmans, H.J.A.M.: The Algebraic Basis of Mathematical Morphology – Part II: Openings and Closings. Computer Vision, Graphics and Image Processing 54, 74–97 (1991)zbMATHGoogle Scholar
  12. 12.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New-York (1982)zbMATHGoogle Scholar
  13. 13.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology, Part II: Theoretical Advances. Academic Press, London (1988)Google Scholar
  14. 14.
    Stell, J.: Relational Granularity for Hypergraphs. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 267–276. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Ta, V.-T., Elmoataz, A., Lézoray, O.: Partial difference equations over graphs: Morphological processing of arbitrary discrete data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 668–680. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Vincent, L.: Graphs and Mathematical Morphology. Signal Processing 16, 365–388 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Voloshin, V.I.: Introduction to Graph and Hypergraph Theory. Nova Science, Bombay (2009)zbMATHGoogle Scholar
  18. 18.
    Yang, M., Yang, Y.: A hypergraph approach to linear network coding in multicast networks. IEEE Transactions on Parallel and Distributed Systems 21, 968–982 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhen, L., Jiang, Z.: Hy-SN: Hyper-graph based semantic network. Knowledge-Based Systems 23(8), 809–816 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Isabelle Bloch
    • 1
  • Alain Bretto
    • 2
  1. 1.CNRS LTCITélécom ParisTechParisFrance
  2. 2.GREYC CNRS-UMR 6072CaenFrance

Personalised recommendations