Properties and Applications of the Simplified Generalized Perpendicular Bisector

  • Aurélie Richard
  • Gaëlle Largeteau-Skapin
  • Marc Rodríguez
  • Eric Andres
  • Laurent Fuchs
  • Jean-Serge Dimitri Ouattara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

This paper deals with the Simplified Generalized Perpendicular Bisector (SGBP) presented in [15,1]. The SGPB has some interesting properties that we explore. We show in particular that the SGPB can be used for the recognition and exhaustive parameter estimation of noisy discrete circles. A second application we are considering is the error estimation for a class of rotation reconstruction algorithms.

Keywords

Simplified Generalized Perpendicular Bisector Adaptive Pixel Size Generalized Reflection Symmetry Rotation Reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, E., Largeteau-Skapin, G., Rodríguez, M.: Generalized perpendicular bisector and exhaustive discrete circle recognition (2010) (submitted for publication at Graphical Models)Google Scholar
  2. 2.
    Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A., Verde-Star, L.: Reflections, rotations, and pythagorean numbers, vol. 19, pp. 1–14 (2009)Google Scholar
  3. 3.
    Audin, M.: Geometry, pp. 46–49. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Cheng, P.: Joint rotation between two attitudes in the spherical rotation coordinate system, vol. 37, pp. 1475–1482 (2004)Google Scholar
  5. 5.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing 25(10), 1543–1556 (2007)CrossRefGoogle Scholar
  6. 6.
    Dexet, M.: Architecture d’un modeleur discret à base topologique d’objets discret et méthodes de reconstruction en dimensions 2 et 3. Ph.D. thesis, Université de Poitiers (2006)Google Scholar
  7. 7.
    Farouki, R.T., Johnstone, J.K.: Computing point/curve and curve/curve bisectors. In: Fisher, R.B. (ed.) The Mathematics of Surfaces V, pp. 327–354. Oxford University, Oxford (1994)Google Scholar
  8. 8.
    Fontijne, D., Dorst, L.: Reconstructing rotations and rigid body motions from points correspondences as a sequence of reflections. In: Applied Geometric Algebras in Computer Science and Engineering, AGACSE 2010, Amsterdam, The Netherlands (June 14-16, 2010)Google Scholar
  9. 9.
    Gebken, C., Perwass, C., Sommer, G.: Parameter estimation from uncertain data in geometric algebra. Advances in Applied Clifford Algebra 18, 647–664 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kerautret, B., Lachaud, J.-O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Peternell, M.: Geometric properties of bisector surfaces. Graphical Models 62(3), 202–236 (2000)CrossRefGoogle Scholar
  12. 12.
    Richard, A., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Decomposition of nD-rotations: classification, properties and algorithm (2010) (submitted for publication at Graphical Models)Google Scholar
  13. 13.
    Richard, A., Fuchs, L., Charneau, S.: An algorithm to decompose n-dimensional rotations into planar rotations. In: Barneva, R., Brimkov, V., Hauptman, H., Natal Jorge, R., Tavares, J. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 60–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, M., Largeteau-Skapin, G., Andres, E.: Adaptive pixel resizing for multiscale recognition and reconstruction. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 252–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rodríguez, M., Sere, A., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Barneva, R., Brimkov, V., Hauptman, H., Natal Jorge, R., Tavares, J. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 1–10. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: SPIE, vol. 1818, pp. 862–876 (1992)Google Scholar
  17. 17.
    Watson, G.: Computing Helmert transformations, vol. 197, pp. 387–394 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aurélie Richard
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Marc Rodríguez
    • 1
  • Eric Andres
    • 1
  • Laurent Fuchs
    • 1
  • Jean-Serge Dimitri Ouattara
    • 1
  1. 1.Laboratory XLIM, SIC DepartmentUniversity of Poitiers BP 30179, UMR CNRS 6712Futuroscope Chasseneuil CedexFrance

Personalised recommendations