Path-Based Distance with Varying Weights and Neighborhood Sequences

  • Nicolas Normand
  • Robin Strand
  • Pierre Evenou
  • Aurore Arlicot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


This paper presents a path-based distance where local displacement costs vary both according to the displacement vector and with the travelled distance. The corresponding distance transform algorithm is similar in its form to classical propagation-based algorithms, but the more variable distance increments are either stored in look-up-tables or computed on-the-fly. These distances and distance transform extend neighborhood-sequence distances, chamfer distances and generalized distances based on Minkowski sums. We introduce algorithms to compute, in \(\mathbb Z^2\), a translated version of a neighborhood sequence distance map with a limited number of neighbors, both for periodic and aperiodic sequences. A method to recover the centered distance map from the translated one is also introduced. Overall, the distance transform can be computed with minimal delay, without the need to wait for the whole input image before beginning to provide the result image.


  1. 1.
    Beatty, S.: Problem 3173. The American Mathematical Monthly 33(3), 159 (1926)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics and Image Processing 27(3), 321–345 (1984)CrossRefGoogle Scholar
  3. 3.
    Hajdu, A., Hajdu, L.: Approximating the Euclidean distance using non-periodic neighbourhood sequences. Discrete Mathematics 283(1-3), 101–111 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lambek, J., Moser, L.: Inverse and complementary sequences of natural numbers. The American Mathematical Monthly 61(7), 454–458 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Montanari, U.: A method for obtaining skeletons using a quasi-Euclidean distance. Journal of the ACM 15(4), 600–624 (1968)CrossRefGoogle Scholar
  6. 6.
    Normand, N.: Convex structuring element decomposition for single scan binary mathematical morphology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 154–163. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ostrowski, A., Hyslop, J., Aitken, A.C.: Solutions to problem 3173. The American Mathematical Monthly 34(3), 159–160 (1927)CrossRefGoogle Scholar
  8. 8.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the ACM 13(4), 471–494 (1966)CrossRefzbMATHGoogle Scholar
  9. 9.
    Rosenfeld, A., Pfaltz, J.L.: Distances functions on digital pictures. Pattern Recognition 1(1), 33–61 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Strand, R.: Weighted distances based on neighbourhood sequences. Pattern Recognition Letters 28(15), 2029–2036 (2007)CrossRefGoogle Scholar
  11. 11.
    Strand, R., Nagy, B., Fouard, C., Borgefors, G.: Generating distance maps with neighbourhood sequences. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 295–307. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Bertrand, G.: An algorithm for a generalized distance transformation based on Minkowski operations. In: International Conference on Pattern Recognition, vol. 2, pp. 1164–1168 (1988)Google Scholar
  13. 13.
    Wang, X., Bertrand, G.: Some sequential algorithms for a generalized distance transformation based on Minkowski operations. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(11), 1114–1121 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nicolas Normand
    • 1
    • 2
  • Robin Strand
    • 3
  • Pierre Evenou
    • 1
  • Aurore Arlicot
    • 1
  1. 1.IRCCyN UMR CNRS 6597University of NantesFrance
  2. 2.School of PhysicsMonash UniversityMelbourneAustralia
  3. 3.Centre for Image AnalysisUppsala UniversitySweden

Personalised recommendations