Canonized Rewriting and Ground AC Completion Modulo Shostak Theories

  • Sylvain Conchon
  • Evelyne Contejean
  • Mohamed Iguernelala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6605)

Abstract

AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground ACcompletion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.

Keywords

decision procedure associativity and commutativity rewriting AC-completion SMT solvers Shostak’s algorithm 

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Proc. 1st LICS, Cambridge, Mass., pp. 346–357 (June 1986)Google Scholar
  3. 3.
    Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of Automated Reasoning 31(2), 129–168 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Conchon, S., Contejean, E., Iguernelala, M.: Canonized Rewriting and Ground AC Completion Modulo Shostak Theories. Research Report 1538, LRI (December 2010)Google Scholar
  5. 5.
    Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)CrossRefMATHGoogle Scholar
  7. 7.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  8. 8.
    Conchon, S., Contejean, E., Bobot, F., Lescuyer, S., Iguernelala, M.: The Alt-Ergo theorem prover, http://alt-ergo.lri.fr
  9. 9.
    Hullot, J.-M.: Associative commutative pattern matching. In: Proc. 6th IJCAI, Tokyo, vol. I, pp. 406–412 (August 1979)Google Scholar
  10. 10.
    Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM Journal on Computing 15(4) (November 1986)Google Scholar
  11. 11.
    Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)CrossRefGoogle Scholar
  13. 13.
    Krstić, S., Conchon, S.: Canonization for disjoint unions of theories. Information and Computation 199(1-2), 87–106 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Lankford, D.S.: Canonical inference. Memo ATP-32, University of Texas at Austin (March 1975)Google Scholar
  15. 15.
    Lankford, D.S., Ballantyne, A.M.: Decision procedures for simple equational theories with permutative axioms: Complete sets of permutative reductions. Memo ATP-37, University of Texas, Austin, Texas, USA (August 1977)Google Scholar
  16. 16.
    Marché, C.: On ground AC-completion. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  17. 17.
    Marché, C.: Normalized rewriting: an alternative to rewriting modulo a set of equations. Journal of Symbolic Computation 21(3), 253–288 (1996)CrossRefMATHGoogle Scholar
  18. 18.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming, Languages and Systems 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  19. 19.
    Nieuwenhuis, R., Rubio, A.: A precedence-based total AC-compatible ordering. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)MATHGoogle Scholar
  21. 21.
    Shostak, R.E.: Deciding combinations of theories. J. ACM 31, 1–12 (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sylvain Conchon
    • 1
    • 2
  • Evelyne Contejean
    • 1
    • 2
  • Mohamed Iguernelala
    • 1
    • 2
  1. 1.LRIUniv Paris-Sud, CNRSOrsayFrance
  2. 2.INRIA Saclay – Ile-de-France, ProValOrsayFrance

Personalised recommendations