QUASY: Quantitative Synthesis Tool

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Barbara Jobstmann
  • Rohit Singh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6605)


We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.


  1. 1.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model checking join forces. Commun. ACM 53(9) (2010)Google Scholar
  2. 2.
    Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Uppaal implementation secrets. In: Formal Techniques in Real-Time and Fault Tolerant Systems (2002)Google Scholar
  3. 3.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In: FMCAD (2009)Google Scholar
  5. 5.
    Brim, L., Chaloupka, J.: Using strategy improvement to stay alive. CoRR, 1006.1405 (2010)Google Scholar
  6. 6.
    Černý, P., Chatterjee, K., Henzinger, T., Radhakrishna, A., Singh, R.: Quantitative synthesis for concurrent programs. Technical Report IST-2010-0004, IST Austria (2010)Google Scholar
  7. 7.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Feinberg, E.A., Shwartz, A.: Handbook of Markov Decision Processes: Methods and Applications. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  9. 9.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    The Scala programming language,
  11. 11.
    Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Hermanns, H., Dhama, A., Theel, O.: Symblicit calculation of long-run averages for concurrent probabilistic systems. In: QEST (2010)Google Scholar
  12. 12.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1-2), 343–359 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Thomas A. Henzinger
    • 1
    • 2
  • Barbara Jobstmann
    • 3
  • Rohit Singh
    • 4
  1. 1.Institute of Science and Technology AustriaAustria
  2. 2.École Polytechnique Fédéral de LausanneSwitzerland
  3. 3.CNRS/VerimagFrance
  4. 4.Indian Institute of Technology BombayIndia

Personalised recommendations