GAVS+: An Open Platform for the Research of Algorithmic Game Solving

  • Chih-Hong Cheng
  • Alois Knoll
  • Michael Luttenberger
  • Christian Buckl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6605)

Abstract

This paper presents a major revision of the tool GAVS. First, the number of supported games has been greatly extended and now encompasses in addition many classes important for the design and analysis of programs, e.g., it now allows to explore concurrent / probabilistic / distributed games, and games played on pushdown graphs. Second, among newly introduced utility functions, GAVS+ includes features such that the user can now process and synthesize planning (game) problems described in the established Strips/PDDL language by introducing a slight extension which allows to specify a second player. This allows researchers in verification to profit from the rich collection of examples coming from the AI community.

References

  1. 1.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. International Journal on Software Tools for Technology Transfer (STTT) 7(2), 118–128 (2005)CrossRefMATHGoogle Scholar
  2. 2.
    Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)Google Scholar
  3. 3.
    Cheng, C.-H., Buckl, C., Luttenberger, M., Knoll, A.: GAVS: Game arena visualization and synthesis. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 347–352. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-tolerant embedded systems using games: From theory to practice. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 118–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Condon, A.: On algorithms for simple stochastic games. Advances in Computational Complexity theory 13, 51–73 (1993)MATHGoogle Scholar
  6. 6.
    De Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theoretical Computer Science 386(3), 188–217 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in pddl. In: ICAPS-Workshop on Planning in Games (2007)Google Scholar
  8. 8.
    Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research 20(1), 61–124 (2003)MATHGoogle Scholar
  9. 9.
    Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338–351. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Shapley, L.: Stochastic games. Proceedings of the National Academy of Sciences of the United States of America 39, 1095 (1953)CrossRefMATHGoogle Scholar
  11. 11.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    White, C., et al.: Markov decision processes. European Journal of Operational Research 39(1), 1–16 (1989)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chih-Hong Cheng
    • 1
  • Alois Knoll
    • 1
  • Michael Luttenberger
    • 1
  • Christian Buckl
    • 2
  1. 1.Department of InformaticsTechnische Universität MünchenGarchingGermany
  2. 2.Fortiss GmbHMünchenGermany

Personalised recommendations