Advertisement

Normalization of Linear Horn Clauses

  • Thomas Martin Gawlitza
  • Helmut Seidl
  • Kumar Neeraj Verma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6527)

Abstract

Nielson et al. [12] exhibit a rich class of Horn clauses which they call \({\cal H}_1\). Least models of finite sets of \({\cal H}_1\) Horn clauses are regular tree languages. Nielson et al. [12] describe a normalization procedure for computing least models of finite sets of \({\cal H}_1\) Horn clauses in the form of tree automata. In the present paper, we simplify and extend this normalization procedure to a semi-procedure that deals with finite sets of linear Horn clauses. The extended semi-procedure does not terminate in general but does so on useful subclasses of finite sets of linear Horn clauses. The extension in particular coincides with the normalization procedure of Nielson et al. [12] for sets of \({\cal H}_1\) Horn clauses. In order to demonstrate the usefulness of the extension, we show how backward reachability analysis for constrained dynamic pushdown networks (see Bouajjani et al. [3]) can be encoded into a class of finite sets of linear Horn clauses for which our normalization procedure terminates after at most exponentially many steps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW, pp. 82–96. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–207 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. Electr. Notes Theor. Comput. Sci. 9 (1997)Google Scholar
  6. 6.
    Goubault-Larrecq, J.: Personal communication (2003)Google Scholar
  7. 7.
    Goubault-Larrecq, J.: Deciding \(\mathcal{H}_1\) by resolution. Inf. Process. Lett. 95(3), 401–408 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005) ISBN 3-540-24297-XCrossRefGoogle Scholar
  9. 9.
    Lugiez, D., Schnoebelen, P.: The regular viewpoint on pa-processes. Theor. Comput. Sci. 274(1-2), 89–115 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Systems. PhD thesis, Technische Universität München (1998)Google Scholar
  11. 11.
    Nielsen, C.R., Nielson, F., Nielson, H.R.: Iterative Specialisation of Horn Clauses. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 131–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn clauses, strongly recognizable relations and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 20–35. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Weidenbach, C.: Towards an automatic analysis of security protocols in first-order logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999) ISBN 3-540-66222-7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Martin Gawlitza
    • 1
  • Helmut Seidl
    • 2
  • Kumar Neeraj Verma
    • 2
  1. 1.CNRS/VERIMAGFrance
  2. 2.Institut für InformatikTU MünchenGermany

Personalised recommendations