Adaptive Nonlinear Flight Control and Control Allocation for Failure Resilience

  • Thomas Lombaerts
  • Michiel van Schravendijk
  • Ping Chu
  • Jan Albert Mulder


In this publication, reconfiguring control is implemented by making use of Adaptive Nonlinear Dynamic Inversion (ANDI) for autopilot control. The adaptivity of the control setup is achieved by making use of a real time identified physical model of the damaged aircraft. In failure situations, the damaged aircraft model is identified by the so-called two step method in real time and this model is then provided to the model-based adaptive NDI routine in a modular structure, which allows flight control reconfiguration on-line. Three important modules of this control setup are discussed in this publication, namely aerodynamicmodel identification, adaptive nonlinear control, and control allocation. Control allocation is especially important when some dynamic distribution of the control commands is needed towards the different input channels. After discussing this modular adaptive controller setup, reconfiguration test results are shown for damaged aircraft models which indicate satisfactory failure handling capabilities of this fault tolerant control setup.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Civil aviation safety data 1993-2007. Technical report, Civil Aviation Authority of the Netherlands (CAA-NL) (2008)Google Scholar
  2. 2.
    de Almeida, F.A., Leißling, D.: Fault-tolerant model predictive control with flight test results on ATTAS. In: AIAA Guidance, Navigation and Control Conference, number AIAA 2009-5621 (2009)Google Scholar
  3. 3.
    Alwi, H.: Fault Tolerant Sliding Mode Control Schemes with Aerospace Applications. PhD thesis, University of Leicester (February 2008)Google Scholar
  4. 4.
    Balas, G., Garrard, W., Reiner, J.: Robust dynamic inversion control laws for aircraft control. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Washington, DC, pp. 192–205. AIAA (1992)Google Scholar
  5. 5.
    Balas, G.J.: Flight control law design: An industry perspective. European Journal of Control, special issue 9(2-3), 207–226 (2003)Google Scholar
  6. 6.
    Bodson, M.: Evaluation of optimization method for control allocation. In: Proceedings of AIAA Guidance, Navigation and Control Conference, number AIAA-2001-4223 (August 2001)Google Scholar
  7. 7.
    Bodson, M., Groszkiewicz, J.E.: Multivariable adaptive algorithms for reconfigurable flight control. IEEE Transactions on Control Systems Technology 5(2), 217–229 (1997)CrossRefGoogle Scholar
  8. 8.
    Chu, Q.P.: Lecture Notes AE4-394, Modern Flight Test Technologies and System Identification. Delft University of Technology, Faculty of Aerospace Engineering (2007)Google Scholar
  9. 9.
    Chu, Q.P., Mulder, J.A., Sridhar, J.K.: Decomposition of aircraft state and parameter estimation problems. In: Proceedings of the 10th IFAC Sympium on System Identifiation, vol. 3, pp. 61–66 (1994)Google Scholar
  10. 10.
    Cieslak, J., Henry, D., Zolghadri, A., Goupil, P.: Development of an active fault-tolerant flight control strategy. AIAA Journal of Guidance, Control and Dynamics 31, 135–147 (2008)CrossRefGoogle Scholar
  11. 11.
    da Costa, R.R., Chu, Q.P., Mulder, J.A.: Re-entry flight controller design using nonlinear dynamic inversion. Journal of Spacecraft and Rockets 40(1), 64–71 (2003)CrossRefGoogle Scholar
  12. 12.
    Durham, W.C.: Computationally efficient control allocation. Journal of Guidance, Control and Dynamics 24(3), 519–524 (2001)CrossRefGoogle Scholar
  13. 13.
    Edwards, C., Lombaerts, T.J.J., Smaili, M.H.:Fault tolerant control - a Benchmark Challenge. Lecture Notes in Control and Information Sciences, vol. 399. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Ganguli, S., Papageorgiou, G., Glavaski, S., Elgersma M.: Aircraft fault detection, isolation and reconfiguration in the presence of measurement errors. In: AIAA Guidance, Navigation and Control Conference and Exhibit, number AIAA-2006-6551, Keystone, Co. (August 2006)Google Scholar
  15. 15.
    Groszkiewicz, J.E., Bodson, M.: Flight control reconfiguration using adaptive methods. In: Proceedings of the 34th Conference on Decision and Control, pp. 1159–1164 (1995)Google Scholar
  16. 16.
    Hallouzi, R., Verhaegen, M.: Fault-tolerant subspace predictive control applied to a boeing 747 model. AIAA Journal of Guidance, Control and Dynamics 31, 873–883 (2008)CrossRefGoogle Scholar
  17. 17.
    Harkegard, O.: Backstepping and Control Allocation with Applications to Flight Control. PhD thesis, Linkoping University, Sweden (2003)Google Scholar
  18. 18.
    Holzapfel, F.: Dynamic inversion based control concept with application to an unmanned aerial vehicle. In: AIAA Guidance, Navigation and Control Conference and Exhibit, number AIAA-2004-4907 (2004)Google Scholar
  19. 19.
    Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. PhD thesis, Lehrstuhl für Flugmechanik und Flugregelung, Technische Universität München (2004)Google Scholar
  20. 20.
    Jategaonkar, R.: Flight Vehicle System Identification: A Time Domain Methodology, 1st edn. Progress in Astronautics and Aeronautics Series, vol. 216. AIAA (2006)Google Scholar
  21. 21.
    Joosten, D.A., van den Boom, T.J.J., Lombaerts, T.J.J.: Effective control allocation in fault-tolerant flight control with mpc and feedback linearization. In: Proceedings of the European Conference on Systems and Control, Kos, Greece, pp. 3552–3559 (July 2007)Google Scholar
  22. 22.
    Joosten, D.A., van den Boom, T.J.J., Lombaerts, T.J.J.: Fault-tolerant control using dynamic inversion and model-predictive control applied to an aerospace benchmark. In: The Proceedings of the 17th IFAC World Congress, vol. 17, pp. 12030–12035 (2008)Google Scholar
  23. 23.
    Kale, M.M., Chipperfield, A.J.: Stabilized mpc formulations for robust reconfigurable flight control. Control Engineering Practice 13(6), 771–788 (2005)CrossRefGoogle Scholar
  24. 24.
    Laban, M.: Online aircraft aerodynamic model identification. PhD thesis, Delft University of Technology (1994)Google Scholar
  25. 25.
    Lombaerts, T., Chu, Q.-P., Mulder, J.A., Joosten, D.: Flight control reconfiguration based on a modular approach. In: Proceedings of the 7th IFAC SAFEPROCESS Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 259–264 (July 2009)Google Scholar
  26. 26.
    Lombaerts, T.J.J.: Fault Tolerant Flight Control. A Physical Model Approach. PhD thesis, Delft University of Technology (2010)Google Scholar
  27. 27.
    Lombaerts, T.J.J., Breeman, J., Joosten, D.A., van den Boom, T.J.J., Chu, Q.P., Mulder, J.A., Verhaegen, M.: Specifications modelling document for Garteur AG16 fault tolerant control. Technical report, Delft University of Technology (2005)Google Scholar
  28. 28.
    Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Modular flight control reconfiguration design and simulation. Control Engineering Practice (2011); invited for a special SAFEPROCESS 2009 section, (accepted for publication since December 18, 2010)Google Scholar
  29. 29.
    Lombaerts, T.J.J., Joosten, D.A., Breemand, J.H., Smaili, H.M., Chu, Q.P., van den Boom, T.J.J., Mulder, J.A., Verhaegen, M.: Assessment criteria as specifications for reconfiguring control. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, CO (August 2006)Google Scholar
  30. 30.
    Lombaerts, T.J.J., Looye, G.H.N., Chu, Q.P., Mulder, J.A.: Fault tolerant flight control using a physical modular approach. Aerospace Science and Technology (2010) (under review)Google Scholar
  31. 31.
    Lombaerts, T.J.J., Van Oort, E.R., Chu, Q.P., Mulder, J.A., Joosten, D.A.: Online aerodynamic model structure selection and parameter estimation for fault-tolerant control. Journal of Guidance, Control and Dynamics 33(3), 707–723 (2010)CrossRefGoogle Scholar
  32. 32.
    Looye, G., Joos, H.-D.: Design of autoland controller functions with multiobjective optimization. AIAA Journal of Guidance, Control and Dynamics 29(2), 475–484 (2006)CrossRefGoogle Scholar
  33. 33.
    Looye, G.H.N.: An Integrated Approach to Aircraft Modelling and Flight Control Law Design. PhD thesis, Delft University of Technology (2007)Google Scholar
  34. 34.
    Maciejowski, J.M., Jones, C.N.: MPC fault-tolerant flight control case study: Flight 1862. In: Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes SAFEPROCESS, Washington DC, USA, pp. 121–126 (June 2003)Google Scholar
  35. 35.
    Marcos, A., Balas, G.: A Boeing 747–100/200 aircraft fault tolerant and diagnostic benchmark. Technical Report AEM–UoM–2003–1, Department of Aerospace and Engineering Mechanics, University of Minnesota (2003)Google Scholar
  36. 36.
    Mulder, J.A.: Design and evaluation of dynamic flight test manoeuvers. PhD thesis, TU Delft, Faculty of Aerospace Engineering (1986)Google Scholar
  37. 37.
    Oppenheimer, M.W., Doman, D.B.: Efficient reconfiguration and recovery from damage for air vehicles. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, number AIAA-2006-6552 (2006)Google Scholar
  38. 38.
    Van Schravendijk, M.: Fault-tolerant flight control with control allocation. Master’s thesis, Delft University of Technology (April 2010)Google Scholar
  39. 39.
    Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  40. 40.
    Smaili, H.M., Breeman, J., Lombaerts, T.J.J.: A simulation benchmark for aircraft survivability assessment. In: Proceedings of the International Congress of Aeronautical Sciences, number 2008-9.3.2 (2008)Google Scholar
  41. 41.
    Smaili, M.H., Breeman, J., Lombaerts, T.J.J., Joosten, D.A.: A simulation benchmark for integrated fault tolerant flight control evaluation. In: Proceedings of the AIAA Modelling and Simulation Technologies Conference and Exhibit, number AIAA-2006-6471 (2006)Google Scholar
  42. 42.
    Szaszi, I., Ganguli, S., Marcos, A., Balas, G.J., Bokor, J.: Application of FDI to a nonlinear Boeing 747 aircraft. In: 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal (July 2002)Google Scholar
  43. 43.
    van Soest, W.R., Chu, Q.P., Mulder, J.A.: Combined feedback linearization and model predictive control for re-entry flight. AIAA Journal of Guidance, Control and Dynamics 29(2), 427–434 (2006)CrossRefGoogle Scholar
  44. 44.
    Varga, A.: Detection and Isolation of Actuator/Surface Faults for a Large Transport Aircraft. In: Edwards, C., Lombaerts, T., Smaili, H. (eds.) Fault Tolerant Flight Control - a Benchmark Challenge. LNCIS, vol. 399, pp. 423–448. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  45. 45.
    Walker, G.P., Allen, D.A.: X-35B STOVL flight control law design and flying qualities. In: Proceedings of the Biennial International Powered Lift Conference and Exhibit, number AIAA-2002-6018 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Lombaerts
    • 1
    • 2
  • Michiel van Schravendijk
    • 2
  • Ping Chu
    • 2
  • Jan Albert Mulder
    • 2
  1. 1.German Aerospace Center DLRInstitute of Robotics and MechatronicsWeßlingGermany
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations