Novel Dynamic Inversion Architecture Design for Quadrocopter Control

  • Jian Wang
  • Thomas Bierling
  • Leonhard Höcht
  • Florian Holzapfel
  • Sebastian Klose
  • Alois Knoll

Abstract

This paper presents a novel controller architecture for a quadrocopter. A two-loop controller using dynamic inversion is designed that allows direct commands for position and heading angle. The inner loop controls the body-fixed angular rates. And the outer loop achieves the position control. With this structure, the position dynamic equation appears in an elegant form. The derived controller is capable of decoupling the strongly coupled dynamics of the quadrocopter, maximizing the transmission bandwidth of the position control, as well as eliminating the singularity caused by the attitude control (i.e. pitch angle at 90 degree). Pseudo-control hedging is applied in the position loop to account for limitations, saturations, actuator dynamics and delay in the inner loop. The effectiveness of the designed controller is demonstrated by an implementation on a quadrocopter equipped with an ARM7 onboard processor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holzapfel, F., Sachs, G.: Dynamic Inversion Based Control Concept with Application to an Unmanned Aerial Vehicle. In: AIAA Guidance, Navigation and Control Conference and Exhibit: AIAA-2004-4907 (2004)Google Scholar
  2. 2.
    Klose, S., Wang, J., et al.: Markerless Vision Assisted Flight Control of a Quadrocopter. In: IEEE 2010 RSJ International Conference on Intelligent Robots and Systems (2010)Google Scholar
  3. 3.
    Voos, H.: Nonlinear Control of a Quadrotor Micro-UAV using Feedback-Linearization. In: Proc. of IEEE International Conference on Mechatronics (2009)Google Scholar
  4. 4.
    Bouabdallah, S., Siegwart, R.: Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor. In: Proc. of the IEEE International Conference on Robotics and Automation (2005)Google Scholar
  5. 5.
    Marquez, H.: Feedback linearization. In: Nonlinear Control Systems – Analysis and Design. Wiley, Canada (2003)Google Scholar
  6. 6.
    Khalil, H.: Feedback linearization. In: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  7. 7.
    Achtelik, M.: Simulink Quadrocopter Framework. Semesterarbeit, Technische Universität München (2009)Google Scholar
  8. 8.
    Achtelik, M.: Nonlinear and Adaptive Control of a Quadcopter, Diplomarbeit, Technische Universität München (2010)Google Scholar
  9. 9.
    Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. PhD thesis, Technische Universität München (2004)Google Scholar
  10. 10.
    Johnson, E.: Limited Authority Adaptive Flight Control. PhD thesis, Georgia Institute of Technology (2000)Google Scholar
  11. 11.
    Franklin, F., Powell, D., et al.: Digital Control of Dynamic System, 2nd edn. Addison-Wesley, Reading (1990)Google Scholar
  12. 12.
    Ascending technologies GmbH, Hummingbird Autopilot (2010), http://www.asctec.de (accessed July 27, 2010)
  13. 13.
    MEMSIC, Inc., Thermal Accelerometer (August 27, 2010), http://www.memsic.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jian Wang
    • 1
  • Thomas Bierling
    • 1
  • Leonhard Höcht
    • 1
  • Florian Holzapfel
    • 1
  • Sebastian Klose
    • 2
  • Alois Knoll
    • 2
  1. 1.Institute of Flight System DynamicsTU MünchenGermany
  2. 2.Institute of Robotics and Embedded SystemsTU MünchenGermany

Personalised recommendations