Advertisement

Apt to Adapt: Micro- and Macro-Level Adaptation in Educational Games

  • Michael D. Kickmeier-Rust
  • Christina M. Steiner
  • Dietrich Albert
Part of the Studies in Computational Intelligence book series (SCI, volume 350)

Abstract

The popularity of computer games has lead to an increasing interest in educational games in research and development in the last decades. Educators as well as technicians are captivated of the idea of utilizing the motivational potential and the rich virtual worlds of today’s computer games. To use the full educational potential of computer games a strong personalization and adaptation to the individual needs and preferences is needed. Conventional methods of educational adaptation, however, are oftentimes not suitable in the context of games, as they may force an interruption of the game experience and thus, destroy immersion and engagement of the player. In this paper we present approaches of educational adaptation in games that allow embedding instruction into the game experience and narrative, through non-invasive assessment of knowledge and motivation, the delivery of various types of adaptive interventions, and adaptive storytelling. The outlined approaches are focus of research, development, and evaluation in the context of the European research project 80Days.

Keywords

Computer Game Collaborative Learning Attributional Style Educational Game Motivational Intervention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merrill, M.D.: First principles of instruction. Educational Technology, Research and Development 50, 43–59 (2002)CrossRefGoogle Scholar
  2. 2.
    Prensky, M.: Digital game-based learning. McGraw-Hill, New York (2001)Google Scholar
  3. 3.
    Van Eck, R.: Digital game-based learning: It’s not just the digital natives who are restless. Educause Review 41, 16–30 (2006)Google Scholar
  4. 4.
    Peirce, N., Conlan, O., Wade, V.: Adaptive Educational Games: Providing Non-invasive Personalised Learning Experiences. In: 2008 Second IEEE International Conference on Digital Games and Intelligent Toys Based Education, pp. 28–35 (2008)Google Scholar
  5. 5.
    De Bra, P.M.E.: Adaptive hypermedia. In: Adelsberger, H.H., Kinshuk, Pawlowski, J.M., Sampson, D. (eds.) Handbook on Information Technologies for Education and Training, pp. 29–46. Springer, Berlin (2008)CrossRefGoogle Scholar
  6. 6.
    Kickmeier-Rust, M.D., Marte, B., Linek, S.B., Lalonde, T., Albert, D.: The effects of individualized feedback in digital educational games. In: Conolly, T., Stansfield, M. (eds.) Proceedings of the 2nd European Conference on Games Based Learning, October 16-17, pp. 227–236. Academic Publishing Limited, Barcelona (2008)Google Scholar
  7. 7.
    Albert, D., Lukas, J.: Knowledge spaces: Theories, empirical research, and applications. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  8. 8.
    Doignon, J.-P., Falmagne, J.-C.: Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196 (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)Google Scholar
  10. 10.
    Augustin, T., Hockemeyer, C., Kickmeier-Rust, M.D., Albert, D.: Individualized skill assessment in educational games: Basic definitions and mathematical formalism. Submitted for Publication to IEEE Transactions on Learning Technologies (2009)Google Scholar
  11. 11.
    Flavell, J.H.: Metacognitive aspects of problem solving. In: Resnick, L.B. (ed.) The Nature of Intelligence, pp. 231–236. Erlbaum, Hillsdale (1976)Google Scholar
  12. 12.
    Zimmerman, B.J.: Self-regulated learning and academic achievement: An overview. Educational Psychologist 25, 3–17 (1990)CrossRefGoogle Scholar
  13. 13.
    Zimmerman, B.J.: Becoming a self-regulated learner: An overview. Theory into Practice 41, 64–70 (2002)CrossRefGoogle Scholar
  14. 14.
    Puustinen, M., Pulkkinen, L.: Models of self-regulated learning: A review. Scandinavian Journal of Edcuational Research 45, 269–286 (2001)CrossRefGoogle Scholar
  15. 15.
    Aviram, A., Ronen, Y., Somekh, S., Winer, A., Sarid, A.: Self-Regulated Peronalized Learning (SRPL): Developing iClass’s pedagogical model. eLearning Papers (9) (2008), http://www.elearningeuropa.info/files/media/media15974.pdf (retrieved September 21, 2009)
  16. 16.
    Doignon, J.-P., Falmagne, J.-C.: Knowledge spaces. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  17. 17.
    Heller, J., Steiner, C., Hockemeyer, C., Albert, D.: Competence-based knowledge structures for personalised learning. International Journal on E-Learning 5, 75–88 (2006)Google Scholar
  18. 18.
    Korossy, K.: Organizing and controlling learning processes within competence–performance structures. In: Albert, D., Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, and Applications, pp. 157–178. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  19. 19.
    Narciss, S., Huth, K.: How to design informative tutoring feedback for multi-media learning. In: Niegemann, H.M., Leutner, D., Brunken, R. (eds.) Instructional Design for Multimedia Learning, pp. 181–195. Waxman, Munster (2004)Google Scholar
  20. 20.
    Mattheiss, E., Kickmeier-Rust, M., Steiner, C., Albert, D.: Motivation in Game-Based Learning: It’s More than, Flow‘. In: Schwill, A., Apostolopoulus, N. (eds.) Lernen im Digitalen Zeitalter, Potsdam, pp. 77–84 (2009)Google Scholar
  21. 21.
    Heckhausen, J., Heckhausen, H.: Motivation und Handeln: Einführung und Überblick [Motivation and action: Introduction and overlook]. In: Heckhausen, J., Heckhausen, H. (eds.) Motivation und Handeln [Motivation and action], pp. 1–8. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Weiner, B.: Achievement motivation and attribution theory. General Learning Press, Morristown (1974)Google Scholar
  23. 23.
    Bandura, A.: Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84, 191–215 (1977)CrossRefGoogle Scholar
  24. 24.
    Keller, J.M.: Development and use of the ARCS model of motivational design. Journal of Instructional Development 10(3), 2–10 (1987)CrossRefGoogle Scholar
  25. 25.
    Rheinberg, F., Krug, S.: Motivationsförderung im Schulalltag [Motivation encouragement in school practice]. Hogrefe, Göttingen (1999)Google Scholar
  26. 26.
    Dresel, M., Ziegler, A.: Langfristige Förderung von Fähigkeitsselbstkonzept und impliziter Fähigkeitstheorie durch computerbasiertes attributionales Feedback [Long-term encouragement of self-concept of ability and implicit ability theory through computer-based attributional feedback]. Zeitschrift für Pädagogische Psychologie 20, 49–63 (2006)CrossRefGoogle Scholar
  27. 27.
    Mateas, M.: Interactive drama, art and artificial intelligence. Technical Report CMU-CS-02-206. School of Computer Science, Carnegie Mellon University (2002)Google Scholar
  28. 28.
    McKee, R.: Story: Substance, structure, style, and the principles of screenwriting. Harper Collins, New York (1997)Google Scholar
  29. 29.
    Göbel, S., Iurgel, I., Rössler, M., Hülsken, F., Eckes, C.: Design and narrative structure for the Virtual Human scenarios. International Journal of Virtual Reality 5(3), 1–10 (2006)Google Scholar
  30. 30.
    Crawford, C.: Chris Crawford on Game Design. New Riders Press, Indianapolis (2003)Google Scholar
  31. 31.
    Crawford, C.: Chris Crawford on Interactive Storytelling. New Riders Press, Indianapolis (2004)Google Scholar
  32. 32.
    Brusilovsky, P.: Adaptive and intelligent technologies for Web-based education. Künstliche Intelligenz 4, 19–25 (1999)Google Scholar
  33. 33.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Kickmeier-Rust, M.D., Albert, D.: The ELEKTRA ontology model: A learner-centered approach to resource description. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 78–89. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael D. Kickmeier-Rust
    • 1
  • Christina M. Steiner
    • 1
  • Dietrich Albert
    • 1
  1. 1.Cognitive Science Section, Department of PsychologyUniversity of GrazAustria

Personalised recommendations