We give a general framework connecing a branching time relation on nodes of a transition system to a final coalgebra for a suitable endofunctor. Examples of relations treated by our theory include bisimilarity, similarity, upper and lower similarity for transition systems with divergence, similarity for discrete probabilistic systems, and nested similarity. Our results describe firstly how to characterize the relation in terms of a given final coalgebra, and secondly how to construct a final coalgebra using the relation.

Our theory uses a notion of “relator” based on earlier work of Thijs. But whereas a relator must preserve binary composition in Thijs’ framework, it only laxly preserves composition in ours. It is this weaker requirement that allows nested similarity to be an example.


  1. 1.
    Aczel, P., Mendler, P.F.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  2. 2.
    Baltag, A.: A logic for coalgebraic simulation. ENTCS 33 (2000)Google Scholar
  3. 3.
    Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base and geometric morphisms I. Cah. Topologie Géom. Différ. Catégoriques 32(1), 47–95 (1991), MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cîrstea, C.: A modular approach to defining and characterising notions of simulation. Inf. Comput. 204(4), 469–502 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Danos, D., Laviolette, P.: Bisimulation and cocongruence for probabilistic systems. Information and Computation 204 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Desharnais, J.: A logical characterization of bisimulation for labelled Markov processes. In: Proceedings of the 2nd International Workshop on Probabilistic Methods in Verification, Univ. of Birmingham Technical Report CS-99-8, pp. 33–48 (1999)Google Scholar
  7. 7.
    Fábregas, I., de Frutos Escrig, D., Palomino, M.: Non-strongly stable orders also define interesting simulation relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Freyd, P.J.: Algebraically complete categories. In: Proc. 1990 Como Category Theory Conf., Berlin. Lecture Notes in Mathematics, vol. 1488, pp. 95–104 (1991)Google Scholar
  9. 9.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Information and Computation 100(2), 202–260 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hennessy, M., Plotkin, G.D.: A term model for CCS. In: Dembiński, P. (ed.) MFCS 1980. LNCS, vol. 88, pp. 261–274. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  11. 11.
    Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Information and Computation 145(2), 107–152 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hesselink, W.H., Thijs, A.: Fixpoint semantics and simulation. TCS 238(1-2), 275–311 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hughes, J., Jacobs, B.: Simulations in coalgebra. TCS 327(1-2), 71–108 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kamae, T., Krengel, U., O’Brien, G.L.: Stochastic inequalities on partially ordered spaces. The Annals of Probability 5(6), 899–912 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Levy, P.B.: Boolean precongruences (2009) (journal submission)Google Scholar
  17. 17.
    Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sokolova, A.: Coalgebraic analysis of probabilistic systems. Ph.D. thesis, Technische Universiteit Eindhoven (2005)Google Scholar
  19. 19.
    Staton, S.: Relating coalgebraic notions of bisimulation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 191–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Ulidowski, I.: Equivalences on observable processes. In: Scedrov, A. (ed.) Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science, pp. 148–161. IEEE Computer Society Press, Santa Cruz (June 1992)Google Scholar
  21. 21.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoretical Computer Science 221 (1999)Google Scholar
  22. 22.
    Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and ω-categories. ENTCS 33 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul Blain Levy
    • 1
  1. 1.University of BirminghamUK

Personalised recommendations